APP  >> Vol. 7 No. 3 (March 2017)

    多光谱干涉成像仪频谱传输特性研究
    Research on Spectrum Transmission Characteristics of Interference Imaging Multi-Spectropolarimetry

  • 全文下载: PDF(3069KB) HTML   XML   PP.55-62   DOI: 10.12677/APP.2017.73008  
  • 下载量: 835  浏览量: 2,437   国家自然科学基金支持

作者:  

张宣妮:咸阳师范学院,物理与电子工程学院,陕西 咸阳

关键词:
图像处理频谱混叠采样定理光学低通滤波器Image Processing Spectrum Aliasing Sampling Theorem Optical Low Pass Filter

摘要:

分析了多光谱干涉仪成像采样过程的频谱传输特性,针对频谱混叠现象采用以下措施进行消除:首先从光学器件参数上保证CCD上相邻两像元对应的最大光程差间隔不大于最大采样间隔,使其满足采样条件;其次通过引入抗光谱混叠滤波器——光学低通滤波器,利用石英晶体的双折射特性,将同一目标图像信息分成错开的o光像和e光像,分开的距离由石英晶体片厚度决定,以满足消除伪低频信号的条件。两种措施结合有效地消除了频谱混叠现象。

This paper analyzed the sampling frequency spectrum transmission characteristics of the inter-ference multi-spectral imaging interferometer imaging process, in view of the spectrum aliasing phenomenon using the following measures to improve: First choosing appropriate optical device parameters to guarantee the maximum optical path difference interval corresponding to any two adjacent pixels of the CCD is not greater than the maximum sampling interval, which can meet the sampling conditions; Secondly, by introducing anti-spectrum aliasing filter—optical low pass filter, which uses the quartz crystal’s birefringence properties to split the same target image information into stagger o image and e image; separate distance is determined by the thickness of quartz crystal slice. It can eliminate false low frequency signal. Combining the above two measures, it can eliminate the spectrum aliasing effectively.

文章引用:
张宣妮. 多光谱干涉成像仪频谱传输特性研究[J]. 应用物理, 2017, 7(3): 55-62. https://doi.org/10.12677/APP.2017.73008

参考文献

[1] Zhang, C.M. and Jian, X.H. (2010) Wide-Spectrum Reconstruction Method for a Birefringence Interference Imaging Spectrometer. Optics Letters, 35, 366-368.
https://doi.org/10.1364/OL.35.000366
[2] 张淳民, 黄伟健, 赵葆常. 新型偏振干涉成像光谱仪噪声分析与评价[J]. 物理学报, 2010, 59(8): 5479-5486.
[3] Gupta, N. and Voloshinov, V. (2004) Hyperspectral Imager, from Ultraviolet to Visible, with a KDP Acousto-Optic Tunable Filter. Applied Optics, 43, 2752-2759.
https://doi.org/10.1364/AO.43.002752
[4] Zhang, C.M.,Wu, H.Y. and Li, J. (2011) Fourier Transform Hyperspectral Imaging Polarimeter for Remote Sensing. Optical Engineering, 50, Article ID: 066201.
https://doi.org/10.1117/1.3591951
[5] 张宣妮, 张淳民. 静态偏振风成像干涉仪光传输特性和光通量改善[J]. 物理学报, 2012, 61(10): 104210.
[6] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究[J]. 物理学报, 2013, 62(3): 030701.
[7] Zhang, X.N. and Zhang, C.M. (2013) Optical Layout Analysis of Polarization Interference Imaging Spectrometer by Jones Calculus in View of Both Optical Throughput and Interference Fringe Visibility. Modern Physics Letters B, 27, 58-63.
https://doi.org/10.1142/S0217984913500127
[8] Zhang, X.N., Zhang, C.M. and Ai, J.J. (2013) The Design Concept of a Static Wide Field-of-View Polarization Michelson Interferometer for Mars Atmosphere Survey. Journal of Modern Optics, 60, 1538-1547.
https://doi.org/10.1080/09500340.2013.825339
[9] He, J. and Zhang, C.M. (2005) The Accurate Calculation of the Fourier Transform of the Pure Voigt Function. Journal of Optics A: Pure and Applied Optics, 7, 613-616.
https://doi.org/10.1088/1464-4258/7/10/014
[10] Mu, T.K., Zhang, C.M., Jia, C.L., et al. (2012) Static Hyperspectral Imaging Polarimeter for Full Linear Stokes Para- meters. Optics Express, 20, 18194-18201.
https://doi.org/10.1364/OE.20.018194
[11] 简小华, 张淳民, 祝宝辉, 等. 利用偏振干涉成像光谱仪进行偏振探测的新方法[J].物理学报, 2008, 57(12): 7565- 7570.
[12] David, R.S., Andrew, D.H., Martin, A., et al. (2006) Development and Testing of a 2-D Transfer CCD. IEEE Transactions on Electronic Devices, 53, 2748-2754.
https://doi.org/10.1109/TED.2006.884072
[13] 王金刚, 李伟, 刘颖. 全帧读出型面阵CCD光电传感器在图像采集卡中的应用[J]. 电子技术应用, 2000, 26(7): 68-70.
[14] 常丹华, 韦清, 尚进, 等. 行间转移型面阵CCD图像采集系统的研究[J]. 电子技术, 2009, 46(1): 71-73.
[15] 童庆禧, 张兵, 郑兰芬. 高光谱遥感:原理、技术与应用[M]. 北京: 高等教育出版社, 2006.
[16] 赵廷玉, 王蓉, 刘玉玲, 等. 光学低通滤波器的特性分析[J]. 光学仪器, 2006, 28(1): 14-19.
[17] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究[J]. 物理学报, 2007, 56(11): 6413-6419.
[18] Mu, T.K., Zhang, C.M. and Zhao, B.C. (2009) Analysis of a Moderate Resolution Fourier Transform Imaging Spectrometer. Optics Communication, 282, 1699-1705.