Sr(Ti0.875Fe0.125)O3薄膜能带结构的垂直应变调控效应研究
Vertical-Strain Effect on the Band Structures of Sr(Ti0.875Fe0.125)O3 Epitaxial Thin Films
DOI: 10.12677/APP.2017.73011, PDF, HTML, XML, 下载: 1,700  浏览: 2,467  国家自然科学基金支持
作者: 周海林, 陈曦雯, 姚 璐, 李 硕, 陈高远, 赵 润*, 马春兰:苏州科技大学数理学院,微纳热流技术与能源应用重点实验室,江苏 苏州
关键词: Sr(Ti0.875Fe0.125)O3薄膜垂直应变密度泛函理论能带结构Sr(Ti0.875Fe0.125)O3 Thin Film Vertical Strain Density Functional Theory Band Structure
摘要: 本文采用密度泛函理论框架下考虑强关联效应的广义梯度近似方法(GGA + U)研究了SrTi1-xFexO3(x = 0.125)薄膜的能带结构,又利用c轴晶格常数拉伸或压缩模拟了SrTi0.875Fe0.125O3薄膜中的垂直张应变和压应变。在基态晶胞结构下,Fe掺杂离子导致了晶胞内空间电荷密度重新排布,并使得非磁性离子周围出现了磁化密度分布。同时借助不同强度的垂直应变作用,实现了SrTi0.875Fe0.125O3薄膜能带结构的连续变化。进而发现垂直张应变能够在很大程度上改善SrTi0.875Fe0.125O3薄膜的半金属特性。
Abstract: The calculations were performed by means of the generalized gradient approximation with on-site coulomb correlation corrections (GGA + U) within the framework of density functional theory (DFT) to study the band structures of SrTi1-xFexO3(x = 0.125) thin films, and the vertical tensile and compressive strain were simulated by the expansion of the out-of-plane crystal lattice in the SrTi0.875Fe0.125O3 films. In the stable cell of SrTi0.875Fe0.125O3, the introduction of doped Fe ions led to the re-arrangement of the charge density in the supercell, and the magnetization density distribution occurred around the non-magnetic ions. Meanwhile, the band structures could be continuously tuned by the different values of vertical strain. Furthermore, the vertical tensile strain can largely improve the half-Metallic behavior of the SrTi0.875Fe0.125O3 films.
文章引用:周海林, 陈曦雯, 姚璐, 李硕, 陈高远, 赵润, 马春兰. Sr(Ti0.875Fe0.125)O3薄膜能带结构的垂直应变调控效应研究[J]. 应用物理, 2017, 7(3): 77-83. https://doi.org/10.12677/APP.2017.73011

参考文献

[1] Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006) Multiferroic and Magnetoelectric Materials. Nature, 442, 759-765.
https://doi.org/10.1038/nature05023
[2] Ma, J., Hu, J., Li, Z. and Nan, C.W. (2011) Recent Progress in Multiferroic Magnetoelectric Composites: From Bulk to Thin Films. Advanced Materials, 23, 1062-1087.
https://doi.org/10.1002/adma.201003636
[3] Shi, Y., Bork, A.H., Schweiger, S. and Rupp, J.L.M. (2015) The Effect of Mechanical Twisting on Oxygen Ionic Transport in Solid-State Energy Conversion Membranes. Nature Materials, 14, 721-727.
https://doi.org/10.1038/nmat4278
[4] Sangle, A.L., Singh, S., Jian, J., Bajpe, S.R., Wang, H.Y., Khare, N. and MacManus-Driscoll, J.L. (2016) Very High Surface Area Mesoporous Thin Films of SrTiO3 Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting. Nano Letters, 16, 7338-7345.
https://doi.org/10.1021/acs.nanolett.6b02487
[5] Harrington, S.A., Zhai, J., Denev, S., Gopalan, V., Wang, H., Bi, Z. and MacManus-Driscoll, J.L. (2011) Thick Lead- Free Ferroelectric Films With High Curie Temperatures through Nano-composite-Induced Strain. Nature Nanotechnology, 6, 491-495.
https://doi.org/10.1038/nnano.2011.98
[6] Oh, Y.S., Luo, X., Huang, F.T. and Cheong, S.W. (2015) Experimental Demonstration of Hybrid Improper Ferroelectricity and the Presence of Abundant Charged Walls in (Ca,Sr)3Ti2O7 Crystals. Nature Materials, 14, 407-413.
https://doi.org/10.1038/nmat4168
[7] Anisimov, V.I., Zaanen, J. and Andersen, O.K. (1991) Band Theory and Mott Insulators: Hubbard U Instead of Stoner I. Physical Review B, 44, 943-954.
https://doi.org/10.1103/PhysRevB.44.943
[8] Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Liquid Metals. Physical Review B, 47, 558-561.
https://doi.org/10.1103/PhysRevB.47.558
[9] Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186.
https://doi.org/10.1103/PhysRevB.54.11169
[10] Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Bril-louin-Zone Integrations. Physical Review B, 13, 5188- 5192.
https://doi.org/10.1103/PhysRevB.13.5188
[11] Dudarev, S.L., Botton, G.A., Savrasov, S.Y., et al. (1998) Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA + U Study. Physical Review B, 57, 1505-1509.
https://doi.org/10.1103/PhysRevB.57.1505
[12] Li, Z., Laskowski, R., Iitaka, T. and Tohyama, T. (2012) First-Principles Calculation of Helical Spin Order in Iron Perovskite SrFeO3 and BaFeO3. Physical Review B, 85, 1531-1538.
[13] Muenstermann, R., Menke, T., Dittmann, R. and Waser, R. (2010) Coexistence of Filamentary and Homogeneous Resistive Switching in Fe-Doped SrTiO3 Thin-Film Memristive Devices. Advanced Materials, 22, 4819-4822.
https://doi.org/10.1002/adma.201001872
[14] Egilmez, M., Leung, G.W., Hakimi, A.M.H.R. and Blamire, M.G. (2010) Origin of Magnetism in La and Fe Doped SrTiO3−δ Films. Journal of Applied Physics, 108, Article ID: 123912.
https://doi.org/10.1063/1.3525707
[15] Kim, D.H., Bi, L., Aimon, N.M., Jiang, P., Dionne, G.F. and Ross, C.A. (2012) The Role of Deposition Conditions on the Structure and Magnetic Properties of SrTi1−xFexO3 Films. Journal of Applied Physics, 111, Article ID: 07A918.
https://doi.org/10.1063/1.3673415
[16] Zhao, R., Li, W.W., Lee, J.H., Choi, E.M., Liang, Y., Zhang, W., Tang, R.J., Wang, H.Y., Jia, Q.X., MacManus-Dris- coll, J.L. and Yang, H. (2014) Precise Tuning of (YBa2Cu3O7−δ)1−x:(BaZrO3)x Thin Film Nanocomposite Structures. Advanced Functional Materials, 24, 5240-5245.
https://doi.org/10.1002/adfm.201304302
[17] Yang, S.M., Lee, S., Jian, J., Zhang, W.R., Lu, P., Jia, Q.X., Wang, H.Y., Noh, T.W., Kalinin, S.V. and MacManus- Driscoll, J.L. (2015) Strongly Enhanced Oxygen Ion Transport through Samarium-Doped CeO2 Nanopillars in Nanocomposite Films. Nature Communications, 6, Article No. 8588.
https://doi.org/10.1038/ncomms9588
[18] Hou, F., Cai, T.Y., Ju, S. and Shen, M.R. (2012) Half-Metallic Ferromagnetism via the Interface Electronic Reconstruction in LaAlO3/SrMnO3 Nanosheet Superlattices. ACS Nano, 6, 8552-8562.
https://doi.org/10.1021/nn303943t