JWRR  >> Vol. 6 No. 2 (April 2017)

    不同生态需水过程下水库多目标优化调度
    Multi-Objective Reservoir Operation under Different Ecological Processes

  • 全文下载: PDF(952KB) HTML   XML   PP.112-124   DOI: 10.12677/JWRR.2017.62015  
  • 下载量: 748  浏览量: 1,095   国家自然科学基金支持

作者:  

哈燕萍,白 涛:西安理工大学西北旱区生态水利工程国家重点实验室培育基地,陕西 西安;
瞿富强:国家电网安康水力发电公司,陕西 安康;
吴 勇,刘永孝:陕西省西咸新区沣西新城管委会建设环保局,陕西 咸阳

关键词:
多目标优化调度生态保证率发电损益比控制水位Multi-Objective Reservoir Operation Ecological Guarantee Rate Loss-Benefit Ratio Control Water Level

摘要:

针对汉江干流水质差、自净能力不足、生态流量难以保证等诸多生态问题,以汉江上游流域内调节性能最好的安康水库为调节手段,将河道基流、自净、冲淤平衡和生物生长的流量进行耦合得到不同生态径流过程作为生态目标。建立发电量最大、生态缺水量最小和兼顾发电和生态的多目标模型,分别采用GA和NSGA-II求解结果表明:1) 生态缺水量最小模型比发电量最大模型发电量减少了1%,生态保证率提高了5%,加入生态目标后,损失较少的发电量即可满足河道生态流量的现状需求;2) 各单目标模型的结果落在了多目标Pareto曲线上,曲线的分段性特征论证了单、多目标结果的准确性和可靠性;3) 以生态发电损益比k评价了各生态径流过程对发电的影响,推荐200%生态径流过程作为未来环境变化下的生态流量过程;4) 制定了生态控制水位限制条件下的生态调度规则,为安康水库生态调度提供技术支撑。

Ecological problems, such as poor water quality, lack of self-purification ability and difficulties in ensuring the ecological flow, have been appeared frequently in Hanjiang River Basin. Ankang reservoir, with the largest capacity in the upper reaches of Hanjiang River, was chosen as the case study in this paper. Different ecological flow processes were obtained according to the river base flow, self-purification, sedimentation balance and the biological growth, and were considered as the ecological target of reservoir operation. Single objective models maximized power generation and minimized ecological water shortage and a multi-objective model considering the two objectives were established and solved by Genetic algorithms (GA) and non-dominated sorting genetic algorithm (NSGA-II), respectively. It is shown that: 1) Compared with the operation model maximized power generation, the model minimized ecological water shortage reduced power generation by 1% and increased ecological guarantee rate by 5%, by which the present ecological requirements can be satisfied under sacrificed less power generation after taking account into ecological target; 2) Results of the single-objective model fall on the multi-objective Pareto curve, and the segmentation characteristics of the curve demonstrate the accuracy and reliability of the single and multi-objective results; 3) The impact of ecological runoff generation on power generation was evaluated by Loss-benefit ratio of ecology and power generation k, and 200% ecological runoff process was recommended as the ecological flow process under environmental change; 4) The ecological scheduling rules under the condition of ecological control water level are formulated, which provides technical support for intuitively and effectively guiding the ecological dispatching of Ankang reservoir.

文章引用:
哈燕萍, 白涛, 瞿富强, 吴勇, 刘永孝. 不同生态需水过程下水库多目标优化调度[J]. 水资源研究, 2017, 6(2): 112-124. https://doi.org/10.12677/JWRR.2017.62015

参考文献

[1] 毛战坡, 王雨春, 彭文启, 等. 筑坝对河流生态系统影响研究进展[J]. 水科学进展, 2005, 16(1): 135-140. MAO Zhanpo, WANG Yuchun, PENG Wernqi, et al. Advances in effects of dams on river ecosystem. Advances in Water Science, 2005, 16(1): 135-140. (in Chinese)
[2] 刘波. 汉江流域安康段水污染现状及防治对策[J]. 现代物业, 2010, 9(3): 115-117. LIU Bo. The present environmental condition and countermeasures of Hanjing River in Ankang period. Modern Property Management, 2010, 9(3): 115-117. (in Chinese)
[3] 郭文献, 付意成, 闫丽娟, 等. 治理修复型水生态补偿问题分析[J]. 自然资源学报, 2013, 28(9): 1538-1546. GUO Wenxian, FU Yicheng, YAN Lijuan, et al. Analysis of watershed treatment & restoration water eco-compensation. Journal of Natural Resources, 2013, 28(9): 1538-1546. (in Chinese)
[4] 马聪, 鲁春霞, 李亦秋, 等. 安康水库下游径流演变及水库运行对径流影响分析[J]. 长江流域资源与环境, 2013, 22(11): 1433-1440. MA Cong, LU Chunxia, LI Yibo, et al. Runoff change in the lower reaches of Ankang reservoir and the influence of Ankang reservoir on its downstream. Resources and Environment in the Yangtze Basin, 2013, 22(11): 1433-1440. (in Chinese)
[5] 毛淘金, 曹学章, 陈斌. 安康水库对下游生态水文情势的影响研究[J]. 中国农村水利水电, 2014(7): 92-96. MAO Taojin, CAO Xuezhang and CHEN Bin. The influence of operation of Ankang reservoir on eco-hydrological characteristics in low reaches of Hanjiang river. China Rural Water and Hydropower, 2014(7): 92-96. (in Chinese)
[6] 孙义, 邵东国, 顾文权. 基于关键物种繁殖的汉江中游生态需水量计算方法[J]. 南水北调与水利科技, 2008, 6(3): 97-99. SUN Yi, SHAO Dongguo and GU Wenquan. Calculation approach of ecological water demand based on breeding of critical species in the middle reaches of Hanjiang River. South-to-North Water Transfers and Water Science &Technology, 2008, 6(3): 97-99. (in Chinese)
[7] 樊皓, 刘金珍, 王中敏. 汉江中下游湿地面积减小后的生态系统服务价值损失[J]. 湿地科学, 2016, 14(4): 576-579. FAN Hao, LIU Jinzhen and WANG Zhongmin. The loss of ecological service value after wetland area decreasing in middle and lower reaches of Hanjiang River. Wetland Science, 2016, 14(4): 576-579. (in Chinese)
[8] 于松延, 徐宗学, 武玮. 基于多种水文学方法估算渭河关中段生态基流[J]. 北京师范大学学报(自然科学版), 2013, 49(2/3): 175-179. YU Songyan, XU Zongxue and WU Wei. Ecological baseflow in the Guanzhong reach of the Wei river estimated by using different hydrological methods. Journal of Beijing Normal University (Natural Science), 2013, 49(2/3): 175-179. (in Chinese)
[9] 杨芳丽, 张小峰, 谈广鸣. 考虑生态调度的水库多目标调度模型初步研究[J]. 武汉大学学报(工学版), 2010, 43(4): 433- 437. YANG Fangli, ZHANG Xiaofeng and TAN Guangming. Elementary study of multi-objective operation model considering ecological operation. Engineering Journal of Wuhan University, 2010, 43(4): 433-437. (in Chinese)
[10] 祝杰, 陈森林, 万飚, 等. 漳河水库多目标中长期优化调度研究[J]. 中国农村水利水电, 2013(9): 60-62. ZHU Jie, CHEN Senlin, WAN Biao, et al. The application of NSGA-II for medium or long-term multi-objective optimal scheduling in Zhanghe reservoir. China Rural Water and Hydropower, 2013(9): 60-62. (in Chinese)
[11] 张洪波, 王义民, 蒋晓辉, 等. 基于生态流量恢复的黄河干流水库生态调度研究[J]. 水力发电学报, 2011, 30(3): 15-21. ZHANG Hongbo, WANG Yimin, JIANG Xiaohui, et al. Ecological regulation of reservoirs on the Yellow River mainstream oriented to ecological flow restoration. Journal of Hydroelectric Engineering, 2011, 30(3): 15-21. (in Chinese)
[12] 顾巍巍, 杨怡青, 钟平安, 等. 基于解空间差分进化算法的水电站生态调度研究[J]. 中国农村水利水电, 2014(11): 163-167. GU Weiwei, WANG Yiqing, ZHONG Pingan, et al. Ecological operation of the hydropower station based on feasible solution space-modified differential evolution algorithm. China Rural Water and Hydropower, 2014(11): 163-167. (in Chinese)
[13] 高宇. 漳河下游的径流趋势分析及生态调度研究[J]. 南水北调与水利科技, 2014, 12(3): 186-190. GAO Yu. Trend analysis of runoff and ecological regulation in downstream of Zhanghe river. South-to-North Water Transfers and Water Science &Technology, 2014, 12(3): 186-190. (in Chinese)
[14] 冯耀龙, 田伊池, 韩金强, 等. 水库生态-发电优化调度及应用研究[J]. 中国农村水利水电, 2014(2): 137-141. FENG Yaolong, TIAN Yichi, HAN Jinqiang, et al. Reservoir ecological power optimal operation and its applied research. China Rural Water and Hydropower, 2014(2): 137-141. (in Chinese)
[15] 陆延华, 张建平. 棋盘山水库多目标生态调度研究[J]. 吉林水利, 2014(2): 19-23. LU Yanhua, ZHANG Jianping. The research of multi-objective ecology dispatch in Qipanshan reservoir. Jilin Water Resources, 2014(2): 19-23. (in Chinese)
[16] 李文生, 许士国. 太子河河道生态环境需水量研究[J]. 大连理工大学学报, 2006, 46(1): 116-120. LI Wensheng, XU Shiguo. Study of water required f or ecological environment in Taizi river. Journal of Dalian University of Technology, 2006, 46(1): 116-120. (in Chinese)
[17] 崔树彬. 关于生态环境需水量若干问题的探讨[J]. 中国水利, 2001(8): 71-74. CUI Shubin. Discussion on some problems of eco-environmental water requirement. China Water Resources, 2001(8): 71-74. (in Chinese)
[18] 门宝辉, 林春坤, 李智飞, 等. 永定河官厅山峡河道内最小生态需水量的历时曲线法[J]. 南水北调与水利科技, 2012, 10(2): 52-56. MEN Baohui, LIN Chunkun, LI Zhifei, et al. Application of flow duration curve method in calculating instream minimum ecological water demand in Guanting gorge of Yongding river. South-to-North Water Transfers and Water Science &Technology, 2012, 10(2): 52-56. (in Chinese)
[19] 朱才荣, 张翔, 穆宏强. 汉江中下游河道基本生态需水与生径比分析[J]. 人民长江, 2014, 45(12): 11-15. ZHU Cairong, ZHANG Xiang and MU Hongqiang. Analysis on basic eco-water demands and REF in mid-lower reaches of Hanjiang river. Yangtze River, 2014, 45(12): 11-15. (in Chinese)
[20] STANLNAKER, C. B. The Instream Flow Incremental Methodology: A Primer for IFIM. National Ecology Research Center. International Publication, Fort Collins, Colorado, USA, 1994.
[21] KING, J. M., LOUW, D. Instream Flow Assessments for Regulated Rivers in South Africa Using the Building Block Methodology. Aquatic Ecosystem Health Restoration, 1998, 1(2): 109-124.
[22] 慕琳. 四川天全白沙河小流域生态需水及用水分配研究[D]: [硕士学位论文]. 南京: 河海大学, 2008. MU Lin. Study on ecological water demand and water allocation in the small basin of Baisha River in Tianquan county of Sichuan. Nanjing, Hohai University, 2008. (in Chinese)
[23] 刘苏峡, 莫兴国, 夏军, 等. 用斜率和曲率湿周法推求河道最小生态需水量的比较[J]. 地理学报, 2006, 61(3): 273-281. LIU Suxia, MO Xingguo, XIA Jun, et al. Uncertainty analysis in estimating the minimum ecological instream flow require-ments via wetted perimeter method: Curvature technique or slope technique. Acta Geographica Sinica, 2006, 61(3): 273-281. (in Chinese)
[24] 吉利娜, 刘苏峡, 王新春. 湿周法估算河道内最小生态需水量——以滦河水系为例[J]. 地理科学进展, 2010, 29(3): 287- 291. JI Lina, LIU Suxia and WANG Xinchun. Wetted perimeter approach to estimate instream flow requirements: A case study in Luanhe Water System. Progress in Geography, 2010, 29(3): 287-291. (in Chinese)
[25] 胡和平, 刘登峰, 田富强, 等. 基于生态流量过程线的水库生态调度方法研究[J]. 水科学进展, 2008, 19(3): 325-332. HU Heping, LIU Dengfeng, TIAN Fuqiang, et al. A method of ecological reservoir reoperation based-on ecological flow regime. Advances in Water Science, 2008, 19(3): 325-332. (in Chinese)
[26] 施展武, 罗云霞, 邱家驹. 基于Matlab遗传算法工具箱的梯级水电站优化调度[J]. 电力自动化设备, 2005, 25(11): 30-33. SHI Zhanwu, LUO Yunxia and QIU Jiaju. Optimal dispatch of cascaded hydropower stations using Matlab genetic algorithm toolbox. Electric Power Automation Equipment, 2005, 25(11): 30-33. (in Chinese)
[27] 王东泉, 李承军, 张铭. 基于遗传算法的水库中长期调度函数研究[J]. 水力发电, 2006, 32(10): 92-94. WANG Dongquan, LI Chengjun and ZHANG Ming. Research on the function of reservoir long-term operation based on genetic algorithms. Hydroelectric Power, 2006, 32(10): 92-94. (in Chinese)
[28] 贠汝安, 董增川, 王好芳. 基于NSGA-II目标优化调度[J]. 山东大学学报(工学版), 2010, 40(6): 124-128. YUN Ruan, DONG Zengchuan and WANG Haofang. Multi-objective optimization of a reservoir based on NSGA-II. Journal of Shandong University (Engineering Science), 2010, 40(6): 124-128. (in Chinese)