聚酰胺酸负载的纳米银催化剂在苯乙烯环氧化反应的应用
Polyimide Supported Silver Nanoparticles as Efficient Catalysts for Styrene Epoxidation
DOI: 10.12677/AMC.2017.52005, PDF, HTML, XML, 下载: 1,777  浏览: 4,683  国家自然科学基金支持
作者: 李紫曦, 王鸣玉, 罗发国, 李衡峰*:中南大学材料科学与工程学院,湖南 长沙
关键词: 聚酰亚胺银纳米粒子苯乙烯环氧化反应环氧苯乙烯Polyimide Silver Nanoparticle Styrene Epoxidation Styrene Oxide
摘要: 本文使用原位法成功制备了聚酰亚胺负载的银纳米催化剂,利用透射电子显微镜(TEM),X射线衍射仪(XRD),傅里叶变换红外光谱(FTIR),热重分析(TGA)对催化剂进行了表征。银纳米粒子在聚酰亚胺基体中处于高分散状态,银纳米粒子的平均尺寸为12.5 nm。将制备的聚酰亚胺负载的银纳米催化剂用于苯乙烯的环氧化反应,评价了其催化氧化性能。当催化剂用量为0.0138 g,乙腈为溶剂,叔丁基过氧化氢为氧化剂时,苯乙烯的转化率(93.5%)和环氧苯乙烯的选择性(82.89%)都很高。实验中还探究了银纳米粒子的负载量,氧化剂种类,溶剂种类,催化剂用量,反应时间和反应温度对催化反应过程的影响。
Abstract: Polyimide-supported silver nanoparticles (PI-AgNPs) were prepared by in situ method. The PI- AgNPs were characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, indicating that the AgNPs were well distributed in the polyimide and had a uniform size of 12.5 nm. The catalytic properties of the supported PI-AgNPs were investigated by the epoxidation of styrene. High conversion (93.5%) and high selectivity (82.89%) were obtained in acetonitrile as the solvent and t-butyl hydroperoxide as the oxidant at a catalyst concentration of 0.0138 g. The effect of Silver Nanoparticles loading, oxidant, solvent, the concentration of the catalyst, reaction time, and temperature on styrene epoxidation were also studied.
文章引用:李紫曦, 王鸣玉, 罗发国, 李衡峰. 聚酰胺酸负载的纳米银催化剂在苯乙烯环氧化反应的应用[J]. 材料化学前沿, 2017, 5(2): 37-45. https://doi.org/10.12677/AMC.2017.52005

参考文献

[1] Purcar, V., Donescu, D., Petcu, C., Luque, R. and Macquarrie, D.J. (2009) Efficient Preparation of Silver Nanoparticles Supported on Hybrid Films and Their Choudhary, V.R., Dumbre, D.K., Patil, N.S., Uphade, B.S. and Bhargava, S.K. (2013) Epoxidation of Styrene by t-Butyl Hydroperoxide over Gold Nanoparticles Supported on Yb2O3: Effect of Gold Deposition Method, Gold Loading, and Calcination Temperature of the Catalyst on Its Surface Properties and Catalytic Performance. Journal of Catalysis, 300, 217-224.
[2] Wang, H., Qian, W., Chen, J., Wu, Y., Xu, X., Wang, J. and Kong, Y. (2014) Spherical V-MCM-48: The Synthesis, Characterization and Catalytic Performance in Styrene Oxidation. RSC Advances, 4, 50832-50839.
https://doi.org/10.1039/C4RA08333D
[3] Valand, J., Parekh, H. and Friedrich, H.B. (2013) Mixed Cu-Ni-Co Nano-Metal Oxides: A New Class of Catalysts for Styrene Oxidation. Catalysis Communications, 40, 149-153.
[4] Huang, X.B., Dong, W.J., Wang, G., Yang, M., Tan, L., Feng, Y.H. and Zhang, X.X. (2011) Synthesis of Confined Ag Nanowires within Mesoporous Silica via Double Solvent Technique and Their Catalytic Properties. Journal of Colloid and Interface Science, 359, 40-46.
[5] Activity in the Oxidation of Styrene under Microwave Irradiation. Applied Catalysis A: General, 363, 122-128.
[6] Chimentao, R.J., Medina, F., Sueiras, J.E., Fierro, J.L.G., Cesteros, Y. and Salagre, P. (2007) Effects of Morphology and Cesium Promotion over Silver Nanoparticles Catalysts in the Styrene Epoxidation. Journal of Materials Science, 42, 3307-3314.
https://doi.org/10.1007/s10853-006-0570-1
[7] Jin, Y., Zhuang, D., Yu, N., Zhao, H., Ding, Y., Qin, L., Liu, J., Yin, D., Qiu, H., Fu, Z. and Yin, D. (2009) Epoxidation of Styrene over Gold Nanoparticles Supported on Organic-Inorganic Hybrid Mesoporous Silicas with Aqueous Hydrogen Peroxide. Microporous and Mesoporous Materials, 126, 159-165.
[8] Liu, J., Wang, F., Gu, Z. and Xu, X. (2009) Styrene Epoxidation over Ag-γ-ZrP Catalyst Prepared by Ion-Exchange. Catalysis Communications, 10, 868-871.
[9] Dong, W.J., Huang, H.D., Zhu, Y.J., Li, X.Y., Wang, X.B., Li, C.R., Chen, B.Y., Wang, G. and Shi, Z. (2012) Room Temperature Solution Synthesis of Ag Nanoparticle Functionalized Molybdenum Oxide Nanowires and Their Catalytic Applications. Nanotechnology, 23, Article ID: 425062.
https://doi.org/10.1088/0957-4484/23/42/425602
[10] Choudhary, V.R. and Dumbre, D.K. (2009) Supported Nano-Gold Catalysts for Epoxidation of Styrene and Oxidation of Benzyl Alcohol to Benzaldehyde. Topics in Catalysis, 52, 1677-1687.
https://doi.org/10.1007/s11244-009-9306-1
[11] Najafpour, M.M., Amini, M., Sedigh, D.J., Rahimi, F. and Bagherzadeh, M. (2013) Activated Layered Manganese Oxides with Deposited Nano-Sized Gold or Silver as an Efficient Catalyst for Epoxidation of Olefins. RSC Advances, 3, 24069-24074.
https://doi.org/10.1039/c3ra45004j
[12] Liu, H., Bai, J., Li, C., Xu, W., Sun, W., Xu, T., Huang, Y. and Li, H. (2014) An Effective Approach to Preparing MgO-Ag NPs-CNFs and Al2O3-Ag NPs-CNFs for Styrene Epoxidation Action. RSC Advances, 4, 3195-3200.
https://doi.org/10.1039/C3RA44494E
[13] Wang, X., Liang, Z., Zhang, F., Yang, L. and Xu, S. (2013) Enhanced Catalytic Performances of Ag Nanoparticles Supported on Layered Double Hydroxide for Styrene Epoxidation. Journal of Materials Science, 48, 5899-5903.
https://doi.org/10.1007/s10853-013-7385-7
[14] Dumbre, D.K., Choudhary, V.R., Patil, N.S., Uphade, B.S. and Bhargava, S.K. (2014) Calcium Oxide Supported Gold Nanoparticles as Catalysts for the Selective Epoxidation of Styrene by t-Butyl Hydroperoxide. Journal of Colloid and Interface Science, 415, 111-116.
[15] Huang, J., Liu, C., Sun, D., Hong, Y., Du, M., Odoom-Wubah, T., Fang, W. and Li, Q. (2014) Biosynthesized Gold Nanoparticles Supported over TS-1 toward Efficient Catalyst for Epoxidation of Styrene. Chemical Engineering Journal, 235, 215-223.
[16] Tebandeke, E., Coman, C., Guillois, K., Canning, G., Ataman, E., Knudsen, J., Wallenberg, L.R., Ssekaalo, H., Schnadt, J. and Wendt, O.F. (2014) Epoxidation of Olefins with Molecular Oxygen as the Oxidant Using Gold Catalysts Supported on Polyoxometalates. Green Chemistry, 16, 1586-1593.
https://doi.org/10.1039/c3gc42198h
[17] Shiraishi, Y. and Toshima, N. (2000) Oxidation of Ethylene Catalyzed by Colloidal Dispersions of Poly(Sodium Acrylate)-Protected Silver Nanoclusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, 59-66.
[18] Xie, K., Liu, J., Zhou, H., Zhang, S., He, M. and Yang, S. (2001) Soluble Fluoro-Polyimides Derived from 1,3-Bis(4- Amino-2-Trifluoromethyl-Phenoxy) Benzene and Dianhydrides. Polymer, 42, 7267-7274.
[19] Matsuura, T., Hasuda, Y., Nishi, S. and Yamada, N. (1991) Polyimide Derived from 2,2’-Bis(Trifluoromethyl)-4, 4’-Diaminobiphenyl. 1. Synthesis and Characterization of Polyimides Prepared with 2,2’-Bis(3,4-Dicarboxyphenyl) Hexafluoropropane Dianhydride or Pyromellitic Dianhydride. Macromolecules, 24, 5001-5005.
https://doi.org/10.1021/ma00018a004
[20] Ahn, J.-H., Kim, J.-C., Ihm, S.-K., Oh, C.-G. and Sherrington, D.C. (2005) Epoxidation of Olefins by Molybdenum(VI) Catalysts Supported on Functional Polyimide Particulates. Industrial & Engineering Chemistry Research, 44, 8560- 8564.
https://doi.org/10.1021/ie040287z
[21] Li, J., Wang, Y., Wang, M.Y., Wang, L.S. and Li, H.F. (2015) A Highly Robust and Reusable Polyimide-Supported Nanosilver Catalyst for the Reduction of 4-Nitrophenol. Journal of Materials Research, 30, 2713-2721.
https://doi.org/10.1557/jmr.2015.258
[22] Wang, X., Liu, X. and Wang, X. (2012) Self-Assembly of Ag-TiO2 Nanoparticles: Synthesis, Characterization and Catalytic Application. Journal of Wuhan University of Technology-Mater. Sci. Ed., 27, 847-851.
https://doi.org/10.1007/s11595-012-0560-x
[23] Lashanizadegan, M. and Erfaninia, N. (2013) Synthesis, Characterization and Catalytic Property of CuO and Ag/CuO Nanoparticles for the Epoxidation of Styrene. Korean Journal of Chemical Engineering, 30, 2007-2011.
https://doi.org/10.1007/s11814-013-0152-2