肝癌血清中MFG-E8水平及其在肝癌转移作用研究
The Level of Serum MFG-E8 in Liver Cancer and Its Metastasis in Liver Cancer
DOI: 10.12677/WJCR.2017.72007, PDF, HTML, XML, 下载: 1,969  浏览: 4,393 
作者: 洪宏海, 王征, 李磊, 林丽英, 夏勇, 刘美玲:广州医科大学附属第三医院检验科,广东 广州;苏宝昌:暨南大学附属华侨医院血库,广东 广州
关键词: 肝癌MFG-E8肿瘤转移Hepatocellular Carcinoma MFG-E8 Cancer metastasis
摘要: 目的:检测肝癌病人血清中MFG-E8水平及探讨其在肝癌中作用。方法:ELISA法检测血清中MFG-E8水平;分子克隆构建MFG-E8真核表达载体;MTT法和Migration assay法分别检测肝癌增殖和转移作用。结果:肝癌病人血清中MFG-E8水平明显升高,对肝癌诊断具有很好的价值,且和AFP水平呈正相关;过表达MFG-E8促进肝癌转移。结论:肝癌病人血清MFG-E8水平升高,其促进肝癌转移,对肝癌诊断具有很好价值。
Abstract: Objective: to detect the level of MFG-E8 in serum of patients with liver cancer and its role in liver cancer. Methods: ELISA was used to detect the level of MFG-E8 in serum. Molecular cloning was used to construct MFG-E8 eukaryotic expression vector. MTT assay and Migration assay were used to detect the proliferation and metastasis of HCC. Results: the level of MFG-E8 in patients’ serum with liver cancer was significantly increased, which has a good value in the diagnosis of liver cancer, and is positively correlated with the level of AFP. Overexpression of MFG-E8 can promote the metastasis of liver cancer. Conclusion: the level of serum MFG-E8 in patients with liver cancer is high, and it can promote the metastasis of liver cancer.
文章引用:洪宏海, 王征, 李磊, 林丽英, 夏勇, 刘美玲, 苏宝昌. 肝癌血清中MFG-E8水平及其在肝癌转移作用研究[J]. 世界肿瘤研究, 2017, 7(2): 40-47. https://doi.org/10.12677/WJCR.2017.72007

参考文献

[1] Ferlay, J., Shin, H.-R., Bray, F., Forman, D., Mathers, C. and Parkin, D.M. (2010) Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893-2917.
https://doi.org/10.1002/ijc.25516
[2] Venook, A.P., Papandreou, C., Furuse, J. and Ladrón de Guevara, L. (2010) The Incidence and Epidemiology of Hepatocellular Carcinoma: A Global and Regional Perspective. Oncologist, 15, 5-13.
https://doi.org/10.1634/theoncologist.2010-S4-05
[3] Forner, A., et al. (2009) [Diagnosis and Treatment of Hepatocellular Carcinoma]. Medicina Clínica, 132, 272-287.
https://doi.org/10.1016/j.medcli.2008.11.024
[4] Altekruse, S.F., McGlynn, K.A. and Reichman, M.E. (2009) Hepatocellular Carcinoma Incidence, Mortality, and Survival Trends in the United States from 1975 to 2005. Journal of Clinical Oncology, 27, 1485-1491.
https://doi.org/10.1200/JCO.2008.20.7753
[5] Llovet, J.M., et al. (1999) Natural History of Untreated Nonsurgical Hepatocellular Carcinoma: Rationale for the Design and Evaluation of Therapeutic Trials. Hepatology, 29, 62-67.
https://doi.org/10.1002/hep.510290145
[6] El-Serag, H.B., et al. (2013) Hepatocellular Carcinoma Screening Practices in the Department of Veterans Affairs: Findings from a National Facility Survey. Digestive Diseases and Sciences, 58, 3117-3126.
https://doi.org/10.1007/s10620-013-2794-7
[7] Farinati, F., et al. (2006) Diagnostic and Prognostic Role of Alpha-Fetoprotein in Hepatocellular Carcinoma: Both or Neither? The American Journal of Gastroenterology, 101, 524-532.
https://doi.org/10.1111/j.1572-0241.2006.00443.x
[8] Lok, A.S., et al. (2010) Des-Gamma-Carboxy Prothrombin and Alpha-Fetoprotein as Biomarkers for the Early Detection of Hepatocellular Carcinoma. Gastroenterology, 138, 493-502.
https://doi.org/10.1053/j.gastro.2009.10.031
[9] Oshima, K., Aoki, N., Kato, T., Kitajima, K. and Matsuda, T. (2002) Secretion of a Peripheral Membrane Protein, MFG-E8, as a Complex with Membrane Vesicles. The FEBS Journal, 269, 1209-1218.
https://doi.org/10.1046/j.1432-1033.2002.02758.x
[10] Aoki, N., et al. (1997) Stage Specific Expression of Milk Fat Globule Membrane Glycoproteins in Mouse Mammary Gland: Comparison of MFG-E8, Butyrophilin, and CD36 with a Major Milk Protein, Beta-Casein. Biochimica et Biophysica Acta (BBA)-General Subjects, 1334, 182-190.
[11] Ensslin, M.A. and Shur, B.D. (2003) Identification of Mouse Sperm SED1, a Bimotif EGF Repeat and Discoidin-Domain Protein Involved in Sperm-Egg Binding. Cell, 114, 405-417.
https://doi.org/10.1016/S0092-8674(03)00643-3
[12] Silvestre, J.S., Théry, C., Lévy, B., Tedgui, A., Amigorena, S. and Mallat, Z. (2005) Lactadherin Promotes VEGF- Dependent Neovascularization. Medecine Sciences (Paris), 21, 683-685.
https://doi.org/10.1051/medsci/2005218-9683
[13] Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A. and Nagata, S. (2002) Identification of a Factor That Links Apoptotic Cells to Phagocytes. Nature, 417, 182-187.
https://doi.org/10.1038/417182a
[14] Aziz, M.M., et al. (2009) MFG-E8 Attenuates Intestinal Inflammation in Murine Experimental Colitis by Modulating Osteopontin-Dependent αvβ3 Integrin Signaling. The Journal of Immunology, 182, 7222-7232.
https://doi.org/10.4049/jimmunol.0803711
[15] Huang, W., et al. (2017) Milk Fat Globule-EGF Factor 8 Suppresses the Aberrant Immune Response of Systemic Lupus Erythematosus-Derived Neutrophils and Associated Tissue Damage. Cell Death and Differentiation, 24, 263-275.
https://doi.org/10.1038/cdd.2016.115
[16] Thery, C., et al. (1999) Molecular Characterization of Dendritic Cell-Derived Exosomes. Selective Accumulation of the Heat Shock Protein HSC73. The Journal of Cell Biology, 147, 599-610.
https://doi.org/10.1083/jcb.147.3.599
[17] Jinushi, M., et al. (2008) Milk Fat Globule EGF-8 Promotes Melanoma Progression through Coordinated Akt and Twist Signaling in the Tumor Microenvironment. Cancer Research, 68, 8889-8898.
https://doi.org/10.1158/0008-5472.CAN-08-2147
[18] Jinushi, M., et al. (2011) Tumor-Associated Macrophages Regulate Tumorigenicity and Anticancer Drug Responses of Cancer Stem/Initiating Cells. Proceedings of the National Academy of Sciences of the United States of America, 108, 12425-12430.
https://doi.org/10.1073/pnas.1106645108
[19] Tibaldi, L., et al. (2013) New Blocking Antibodies Impede Adhesion, Migration and Survival of Ovarian Cancer Cells, Highlighting MFGE8 as a Potential Therapeutic Target of Human Ovarian Carcinoma. PLoS ONE, 8, e72708.
https://doi.org/10.1371/journal.pone.0072708