基于SOC和等微增率准则的分布式储能控制方法
A Control Strategy Based on State-of-Charge and Equal Incremental Cost Criterion for Distributed Energy Storage
DOI: 10.12677/SG.2017.72006, PDF, HTML, 下载: 1,679  浏览: 5,115  国家自然科学基金支持
作者: 韦佐霖*, 陈民铀, 李 强, 陈飞雄, 凌伟方:重庆大学电气工程学院输配电装备及系统安全与新技术国家重点实验室,重庆
关键词: 孤岛微网分布式储能SOC充放电效率等微增率Island Microgrid Distributed Energy Storage SOC Charging/Discharging Efficiency Equal Incremental Cost Criterion
摘要: 在微电网运行中,不同状态的蓄电池储能单元具有不同的功率支撑能力,从而影响系统供电的稳定性和可靠性;同时研究发现储能充放电效率与其充放电功率及SOC有密切关系。针对上述问题,提出了一种基于分布式储能单元SOC和等微增率准则的控制方法,以提高负荷功率在分布式储能单元间的分配精度和降低系统有功损失。通过等微增率准则将系统有功损失目标函数转化并求解,然后将各分布式储能单元SOC和微增率作为下垂控制输入量,通过收集本地信息,实时调节各储能单元输出功率,以实现供需两端功率的动态平衡和储能单元间SOC的差异均衡。最后通过Matlab/Simulink仿真分析了所提控制策略在分布式负载波动和系统储能单元故障切除情况下的控制效果,仿真结果验证了本文所提方法的有效性和“即插即用”特性。
Abstract: In a microgrid, different types of battery energy storage units (BESU) have different power sup-porting capacity, which affects the system stability and reliability. And recent research has dis-covered that the charging/discharging efficiency of BESU has remarkable dependence on the charging/discharging rate and state-of-charge (SOC) of the BESU. Therefore, in this paper a control strategy to improve the accuracy of power dispatch and reduce system power losses is proposed, in which the state-of-charge (SOC) and equal incremental cost criterion of multiple parallel distributed BESU are considered. Based on the equal incremental cost criterion, the objective function of system power losses is transformed and solved. And in this method, which only needs the local information, the SOC and incremental cost of each distributed BESU are employed in the controller to adjust its output power in real-time, thus realizing dynamic balance between supply and demand, and eliminating SOC error of parallel distributed BESU. Finally, a Matlab/Simulink model is built to test the balancing effects of the proposed control strategy, in which the variations in distributed loads and distributed BESU are both considered. Simulation results demonstrate the validity as well as the plug and play capability of the method.
文章引用:韦佐霖, 陈民铀, 李强, 陈飞雄, 凌伟方. 基于SOC和等微增率准则的分布式储能控制方法[J]. 智能电网, 2017, 7(2): 47-58. https://doi.org/10.12677/SG.2017.72006

参考文献

[1] 赵波, 李鹏, 童杭伟, 等. 从分布式发电到微网的研究综述[J]. 浙江电力, 2010(3): 1-5.
[2] 周林, 黄勇, 郭珂, 等. 微电网储能技术研究综述[J]. 电力系统保护与控制, 2011, 39(7): 147-152.
[3] 李斌, 宝海龙, 郭力. 光储微电网孤岛系统的储能控制策略[J]. 电力自动化设备, 2014, 34(3): 8-15.
[4] 王成山, 武震, 李鹏. 分布式电能存储技术的应用前景与挑战[J]. 电力系统自动化, 2014, 38(16): 1-8.
[5] 张纯, 陈民铀, 王振存. 微网运行模式平滑切换的控制策略研究[J]. 电力系统保护与控制, 2011, 39(20): 1-5.
[6] 王成山, 高菲, 李鹏, 等. 低压微网控制策略研究[J]. 中国电机工程学报, 2012, 32(25): 2-8.
[7] 郑永伟, 陈民铀, 李闯, 等. 自适应调节下垂系数的微电网控制策略[J]. 电力系统自动化, 2013, 37(7): 6-11.
[8] Wu, D., Tang, F., Dragicevic, T., et al. (2014) Autonomous Active Power Control for Islanded ac Microgrids with Photovoltaic Generation and Energy Storage System. IEEE Transactions on Energy Conversion, 29, 882-892.
https://doi.org/10.1109/TEC.2014.2358612
[9] 麻常辉, 潘志远, 刘超男, 等. 基于自适应下垂控制的风光储微网调频研究[J]. 电力系统保护与控制, 2015, 43(23): 21-27.
[10] Lu, X., Sun, K., Guerrero, J.M., et al. (2014) State-of-Charge Balance Using Adaptive Droop Control for Distributed Energy Storage Systems in DC Microgrid Applications. IEEE Transactions on Industrial Electronics, 61, 2804-2815.
https://doi.org/10.1109/TIE.2013.2279374
[11] 王炜信, 段建东, 张润松, 等. 孤岛电网中多储能设备SOC一致性优化策略[J]. 电工技术学报, 2015, 30(23): 126-135.
[12] Zhu, W.H., Zhu, Y. and Tatarchuk, B.J. (2011) A Simplified Equivalent Circuit Model for Simulation of Pb-Acid Batteries at Load for Energy Storage Application. Energy Conversion and Management, 52, 2794-2799.
https://doi.org/10.1016/j.enconman.2011.02.013
[13] Wood, A.J. and Wollenberg, B.F. (2012) Power Generation, Operation, and Control. John Wiley & Sons, Hoboken.
[14] Amoroso, F.A. and Cappuccino, G. (2012) Advantages of Efficiency-Aware Smart Charging Strategies for PEVs. Energy Conversion and Management, 54, 1-6.
https://doi.org/10.1016/j.enconman.2011.09.006
[15] Chen, G., Lewis, F.L., Feng, E.N., et al. (2015) Distributed Optimal Active Power Control of Multiple Generation Systems. IEEE Transactions on Industrial Electronics, 62, 7079-7090.
https://doi.org/10.1109/TIE.2015.2431631
[16] Guerrero, J.M., Vasquez, J.C., Matas, J., et al. (2011) Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach toward Standardization. IEEE Transactions on Industrial Electronics, 58, 158-172.
https://doi.org/10.1109/TIE.2010.2066534
[17] Dragičević, T., Guerrero, J.M., Vasquez, J.C., et al. (2014) Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery Management Capability. IEEE Transactions on Power Electronics, 29, 695-706.
https://doi.org/10.1109/TPEL.2013.2257857