APP  >> Vol. 7 No. 4 (April 2017)

    铈掺杂Ca3Co4O9+δ材料的制备与磁性研究
    Preparation and Study on Magnetic Properties of Ce-Doped Ca3Co4O9+δ

  • 全文下载: PDF(3170KB) HTML    PP.92-96   DOI: 10.12677/APP.2017.74013  
  • 下载量: 773  浏览量: 1,604   科研立项经费支持

作者:  

范天舒:哈尔滨师范大学,现代教育技术与实验中心,黑龙江 哈尔滨;
崔乃庚,曲秀荣:物理与电子工程学院,黑龙江 哈尔滨

关键词:
Ca3Co4O9+δCe掺杂微观结构磁性曲线Ca3Co4O9+δ Ce-Doped Microstructure Magnetic Curve

摘要:

本文应用溶胶-凝胶法制备热电材料Ca3Co4O9+δ(x = 0, 0.05, 0.10, 0.15)粉体。研究Ce掺杂对粉体微观结构的影响。XRD结果表明,随着Ce掺杂含量增加,衍射峰向大角度偏移,说明了Ce元素通过掺杂到Ca3Co4O9+δ晶格当中。通过SEM扫描发现,材料的晶粒呈层状结构且尺寸大小均匀。通过振动样品强磁计(VSM)对样品磁性进行分析,发现Ce元素的掺杂对样品的磁性有轻微的影响。

This thesis is to produce thermoelectric material powders Ca3Co4O9+δ(x = 0, 0.05, 0.10, 0.15) in application of sol-gel method. It also studies Ce doping’s effects on powder microstructure. XRD results show that as the Ce doping content increases diffraction peak shifts to a large angle, which indicates Ce element is doped into the Ca3Co4O9+δ lattice. Through SEM scanning, we can find that the grains of the material are layer-structured and in a uniform size. Through the analysis for sample magnetism by VSM vibration, we can find that Ce doping has an effect on sample magnetism.

文章引用:
范天舒, 崔乃庚, 曲秀荣. 铈掺杂Ca3Co4O9+δ材料的制备与磁性研究[J]. 应用物理, 2017, 7(4): 92-96. https://doi.org/10.12677/APP.2017.74013

参考文献

[1] Weidenkaff, A., Trottmann, M., Tomeš, P., Suter, C., Steinfeld, A. and Veziridis, A. (2013) Solar TE Converter Applications, 182, 365-382.
[2] Yamauchi, H., Karonen, L., Egashira, T., et al. (2011) Ca-for-Sr in the Thermoelectric [(Sr, Ca) 2 (O, OH) 2] q [CoO2] Misfit-Layered Cobalt-Oxide System. Journal of Solid State Chemistry, 184, 64-69.
[3] Song, Y. and Nan, C.W. (2011) High Temperature Transport Properties of Ag-added (Ca0.975La0.025)3Co4O9 Ceramics. Physica B, 406, 2919-2923.
[4] Sales, B.C. (2002) Thermoelectric Materials-Smaller Is Cooler. Science, 295, 1248-1249.
https://doi.org/10.1126/science.1069895
[5] Song, Y., Sun, Q., Zhao, L.R., et al. (2009) Synthesis and Thermoelectic Power Factor of (Ca0.95Bi0.05)3Co4O9/Ag Composites. Materials Chemistry and Physics, 113, 645-649.
[6] Terasaki, I., Sasago, Y. and Uchinokura, K. (1997) Large Thermoelectric Power of NaCo2O4 Single Crystals. Physical Review B, 56, R12685-R12687.
https://doi.org/10.1103/PhysRevB.56.R12685
[7] Wang, Y., Sui, Y. and Cheng, J.G. (2008) High Temperature Transport and Thermoelectric Properties of Ag-Substituted Ca3Co4O9+δ System. Journal of Alloys and Compounds, 448, 1-5.
[8] Xiang, P.H., Kinemuchi, Y., Kago, H. and Watari, K. (2008) Electromagnetic Properties of Carbon Black and Barium Titanate Composite Materials. Journal of Alloys and Compounds, 454, 364-369.
[9] Butt, S., Liu, Y.C., Lan, J.L., et al. (2014) High-Temperature Thermoelelctric Properties of La and Fe Co-Doped Ca-Co-O Misfit-Layered Cobaltites Consolidated by Spark Plasma Sintering. Journal of Alloys and Compounds, 588, 277-283.
[10] Zhang, F.P., Zhang, X., Lu, Q.M., Zhang, J.X., Liu, Y.Q. and Zhang, G.Z. (2011) Effects of Pr Doping on Thermoelectric Transport Properties of Ca3-xPrxCo4O9. Solid State Sciences, 2011, 1-5.