HJWC  >> Vol. 7 No. 2 (April 2017)

    基于大规模MIMO的信道检测算法研究
    Research on Channel Detection Algorithm Based on Massive MIMO Communication System

  • 全文下载: PDF(478KB) HTML   XML   PP.45-52   DOI: 10.12677/HJWC.2017.72007  
  • 下载量: 927  浏览量: 2,992  

作者:  

高君慧,张梦娇,曹 凡,汪佳玮,吉 峰:东南大学信息科学与工程学院,江苏 南京

关键词:
大规模MIMO信道检测算法QR分解Massive MIMO Channel Detection Algorithm QR Decomposition

摘要:

信道检测是大规模多输入多输出(multiple input multiple output, MIMO)系统中不可缺少的重要模块,往往决定着整个通信系统性能的好坏。信道检测的主要作用是将信道估计后得到的信道矩阵进行运算处理,从而得到发送的信号矢量。本文介绍了硬件可实现的最大比合并检测算法和基于QR分解的线性最小均方误差检测算法,并建立系统传输模型,对上行链路数据传输过程进行仿真。仿真结果表明,基于QR分解线性最小均方误差算法的性能要优于最大比合并算法。

Channel detection is an indispensable module in massive MIMO communication systems, which often determines the performance of the entire communication system. The main function of channel detection is to deal with the channel matrix obtained by channel estimation to get the signal vector sent by the users. In this paper, we introduce the maximum ratio combining algo-rithm and the linear minimum mean square error detection algorithm based on QR decomposition, and establish the system model to simulate the uplink data transmission. The simulation results show that the performance of the linear minimum mean square error algorithm based on QR decomposition is superior to the maximum ratio combining algorithm.

文章引用:
高君慧, 张梦娇, 曹凡, 汪佳玮, 吉峰. 基于大规模MIMO的信道检测算法研究[J]. 无线通信, 2017, 7(2): 45-52. https://doi.org/10.12677/HJWC.2017.72007

参考文献

[1] Andrews, J.G., Buzzi, S., Choi, W., et al. (2014) What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32, 1065-1082.
https://doi.org/10.1109/JSAC.2014.2328098
[2] Marzetta, T.L. (2010) Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9, 3590-3600.
https://doi.org/10.1109/TWC.2010.092810.091092
[3] Larsson, E.G., Edfors, O., Tufvesson, F., et al. (2014) Massive MIMO for Next Generation Wireless Systems. IEEE Communications Magazine, 52, 186-195.
https://doi.org/10.1109/MCOM.2014.6736761
[4] Verdu, S. (1998) Multiuser Detection. Cambridge University Press, Cambridge.
[5] Myllyla, M., Hintikka, J.M., Cavallaro, J.R., et al. (2005) Complexity Analysis of MMSE Detector Architectures for MIMO OFDM Systems. Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 30 October-2 November 2005, 75-81.
https://doi.org/10.1109/acssc.2005.1599705
[6] Echman, F. and Owall, V. (2005) A Scalable Pipelined Complex Valued Matrix Inversion Architecture. 2005 IEEE International Symposium on Circuits and Systems, 5, 4489-4492.
[7] Karkooti, M., Cavallaro, J.R. and Dick, C. (2005) FPGA Implementation of Matrix Inversion Using QRD-RLS Algorithm. Conference Record of the 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 30 October-2 November 2005, 1625-1629.
https://doi.org/10.1109/acssc.2005.1600043
[8] Hassibi, B. (2000) An Efficient Square-Root Algorithm for BLAST. Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’00, 2, II737-II740.
https://doi.org/10.1109/icassp.2000.859065
[9] Bohnke, R., Wubben, D., Kuhn, V., et al. (2003) Reduced Complexity MMSE Detection for BLAST Architectures. Global Telecommunications Conference, GLOBECOM’03, 4, 2258-2262.
https://doi.org/10.1109/glocom.2003.1258637
[10] Kim, H.S., Zhu, W., Bhatia, J., et al. (2008) A Practical, Hardware Friendly MMSE Detector for MIMO-OFDM-Based Systems. EURASIP Journal on Advances in Signal Processing, 2008, Article ID: 267460.
https://doi.org/10.1155/2008/267460
[11] (2003) 3GPP: Spatial Channel Model for MIMO Simulations. http://www.3gpp.org/