非球形颗粒碰撞过程硬颗粒与软颗粒模型比较研究
Comparison of Collision Dynamics of Non-Spherical Particles between the Hard-Particle Model and Soft-Particle Model
DOI: 10.12677/APP.2017.74014, PDF, HTML, XML,  被引量 下载: 1,707  浏览: 3,679 
作者: 吴达岭:浙江省安全生产科学研究院,浙江 杭州;桂 南*:清华大学核能与新能源技术研究院,先进反应堆工程与安全教育部重点实验室,北京
关键词: 能源工程化工过程安全生产非球形碰撞模型离散元硬颗粒软颗粒Energy Engineering Chemical Engineering Safety Manufacturing Non-Spherical Collision Model Discrete Element Method Hard Particle Soft-Particle
摘要: 在能源化工过程、矿业冶金及安全生产过程中均会涉及复杂的实际非球形颗粒体系,而颗粒的非球形碰撞动力学过程是对复杂颗粒体系进行研究必须要考虑的基本问题。离散元方法通过弹簧、阻尼、摩擦三种力学特性对颗粒-颗粒接触力进行建模,是目前国际上最为广泛使用的针对球形颗粒体系的模型。本文对典型三角形非球形碰撞动力学工程过程进行理论分析和模型比较研究,对国际上目前正在研究的硬颗粒和软颗粒非球形碰撞模型进行了比较。通过模型比较,证明了在工程上可以接受的计算误差范围内,软颗粒和硬颗粒计算结果吻合较好,两者在计算精度、稳定性、适用性方面各有优势,可以在不同的应用场合分别采用不同的计算模型。
Abstract: Non-spherical particles and complex non-spherical particle systems are commonly encountered in energy chemical engineering, mineral engineering, and safety manufacturing engineering. The collision dynamics of non-spherical particles are fundamental issues in the investigations of complex particle systems. Discrete element method is the most prevalent models for particle-particle collision of spherical shapes, which incorporates a spring, a dashpot, and a frictional interaction. In this work, a comparative and analytical study on the mathematical models of collision dynamics for non-spherical particles is carried out. The hard non-spherical particle model and the soft-par- ticle model have been compared. It indicates that agreeable simulation results can be found for the two models. The two models have different advantages or disadvantages in accuracy, computational stability, and feasibility, with particular suitability for different cases.
文章引用:吴达岭, 桂南. 非球形颗粒碰撞过程硬颗粒与软颗粒模型比较研究[J]. 应用物理, 2017, 7(4): 97-102. https://doi.org/10.12677/APP.2017.74014

参考文献

[1] 桂南. 复杂两相流动中颗粒碰撞的DEM-LES/DNS耦合模拟研究[D].杭州: 浙江大学, 2010.
[2] Hoomans, B.P.B., Kuipers, J.A.M., Briels, W.J. and van Swaaij, W.P.M. (1996) Discrete Particle Simulation of Bubble and Slug Formation in a Two-Dimensional Gas-Fluidised Bed a Hard-Sphere Approach. Chemical Engineering Science, 51, 99-118.
[3] Hoomans, B.P.B. (1999) Granular Dynamics of Gas-Solid Two-phase Flow. Ph.D. Thesis, Netherlands: Maastricht, 146-149.
[4] Cundall, P.A. and Strack, O.D.L. (1979) A Discrete Numerical Model for Granular Assemblies. Geotechnique, 29, 47-65.
https://doi.org/10.1680/geot.1979.29.1.47
[5] Crowe, C.T., Sommerfeld, M. and Tsuji, Y. (1998) Muhiphase Flow with Droplets and Particles. CRC Press, New York.
[6] Gui, N., Yang, X.T., Tu, J.Y. and Jiang, S.Y. (2016) An Extension of Hard-Particle Model for Three-Dimensional Non-Spherical Particles: Mathematical Formulation and Validation. Applied Mathematical Modelling, 40, 2485-2499.
[7] Gui, N., Yang, X.T., Tu, J.Y. and Jiang, S.Y. (2016) A Soft-Sphere-Imbedded Pseudo-Hard-Particle Model for Simulation of Discharge Flow of Brick Particles. AIChE Journal, 62, 3562-3574.
https://doi.org/10.1002/aic.15278