雷达探测技术在月球科学探测研究中的进展
The Application Research of Ground Penetrating Radar Technology to Lunar Exploration
摘要: 雷达探测技术利用高频电磁波在不同介质中传播和反射性质的差异,获取地下探测对象的地质剖面,具有快速、连续、无损和高分辨率等优势。自20世纪70年代以来,已在月球科学探测研究中获得了丰硕的成果,涉及领域如月球地形地貌测绘、月壤厚度探测、月球次表层结构探测和月球水冰探测等。2014年,中国嫦娥三号探测器携带的测月雷达圆满完成月球巡视探测,标志着中国在测月雷达设备研制、数据采集、软件设计和数据处理解释等方面取得了令人瞩目的成就。本文针对国际上测月雷达方法技术研究、雷达仪器设备研制、测月雷达数据处理方法以及雷达探测技术探月研究成果进行综述,并对应用雷达探测技术进行外星体探测的未来前景进行展望。
Abstract: Using electromagnetic waves that possess different propagation characteristics in different materials, Ground Penetrating Radar (GPR) is an efficient and non-invasive technique for probing terrestrial and planetary subsurfaces. Since the 1970s, GPR has been applied to lunar exploration programs, including the mapping of lunar regolith and the detection of subsurface geologic structures and water ice. Along with the application, Chinese Chang’E-3 lunar penetrating radar (LPR) onboard Yutu lunar rover stands out as one of the notable achievements. As the first situ lunar radar detector, Chang’E-3 LPR demonstrated that GPR can be used to determine subsurface stratigraphy on the Moon. This paper provides a review of the study on LPR equipment and data processing method as well as the results of the application of GPR technology in lunar exploration. Furthermore, as shown in the last part, GPR also applies to surveys of other planets, such as Mars. However, human are still faced with several problems in this field. For example, it is of much difficulty to carry out research on the far side of the moon with situ detectors.
文章引用:尚可, 钱荣毅. 雷达探测技术在月球科学探测研究中的进展[J]. 地球科学前沿, 2017, 7(2): 158-166. https://doi.org/10.12677/AG.2017.72017

参考文献

[1] Phillips, R.J., Adams, G.F., Brown, W.E., et al. (1973) Apollo Lunar Sounder Experiment. NASA Technical Report.
[2] Porcello, L.J., Jordan, R.L., Zelenka, J.S. and Adams, G.F. (1974) The Apollo Lunar Sounder Radar System. Proceedings of the IEEE, 62, 769-783.
https://doi.org/10.1109/PROC.1974.9517
[3] Ono, T. and Oya, H. (2000) Lunar Radar Sounder (LRS) Experiment On-Board the SELENE Spacecraft. Earth, Planets and Space, 52, 629-637.
https://doi.org/10.1186/BF03351671
[4] Ono, T., Kumamoto, A., Nakagawa, H., Yamaguchi, Y., Oshigami, S., Yamaji, A., et al. (2009) Lunar Radar Sounder Observations of Subsurface Layers under the Nearside Maria of the Moon. Science, 323, 909-912.
https://doi.org/10.1126/science.1165988
[5] Nozette, S., Spudis, P., Bussey, B., Jensen, R., Raney, K., Winters, H., et al. (2010) The Lunar Reconnaissance Orbiterminiature Radio Frequency (Mini-RF) Technology Demonstration. Space Science Reviews, 150, 285-302.
https://doi.org/10.1007/s11214-009-9607-5
[6] 丁春雨, 封剑青, 郑磊等. 雷达探测技术在探月中的应用[J]. 天文研究与技术, 2015, 12(2): 229-240.
[7] Thompson, T.W. (1987) High-Resolution Lunar Radar Map at 70-cm Wavelength. Earthmoon and Planets, 37, 59-70.
https://doi.org/10.1007/BF00054324
[8] 李雄耀, 王世杰, 陈丰, 欧阳自远, 程安云, 李世杰. 月壤厚度的研究方法与进展[J]. 矿物学报, 2007: 64-68.
[9] 孙泽洲, 张熇, 贾阳, 等. 嫦娥三号探测器地面验证技术[J]. 中国科学: 技术科学, 2014(4): 369-376.
[10] 连懿. 基于嫦娥探月微波数据的月球浅表层成分反演与结构分析研究[D]: [博士学位论文]. 长春: 吉林大学, 2014.
[11] 喻菲. 揭秘月球车试验场:中国最像月球的地方[N]. 新华每日电讯, 2013-12-05(005).
[12] 代树武, 吴季, 孙辉先, 张宝明, 杨建峰, 方广有, 等. 嫦娥三号巡视器有效载荷[J]. 空间科学学报, 2014, 34(3): 332-340.
[13] 孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就[J]. 中国科学: 技术科学, 2014(4): 331-343.
[14] Zhao, N., Zhu, P.M., Yang, K.S., Yuan, Y.F. and Guo, S.L. (2014) The Preliminary Processing and Analysis of LPR Channel-2B Data From Chang’E-3. Science China Physics, Mechanics & Astronomy, 57, 2346-2353.
https://doi.org/10.1007/s11433-014-5590-2
[15] Fang, G.Y., Zhou B., Ji, Y.C., et al. (2014) Lunar Penetrating Radar Onboard the Chang’e-3 Mission. Research in Astronomy and Astrophysics, 14, 1607-1622.
https://doi.org/10.1088/1674-4527/14/12/009
[16] 郑磊, 苏彦, 郑永春, 等. 地基雷达技术及其在太阳系天体探测中的应用[J]. 天文学进展, 2009, 27(4): 373-382.
[17] 李雁斌, 王凤姣, 江利中. 小行星浅表探测雷达技术[J]. 制导与引信, 2015, 36(1): 51-58.
[18] 法文哲, 金亚秋. 雷达探测仪对月球次表层结构的探测模拟方法[J]. 中国科学: 地球科学, 2010(4): 473-485.
[19] Li, C., Liu, J., Ren, X., Zuo, W., Tan, X., Wen, W., et al. (2015) The Chang’E 3 Mission Overview. Space Science Reviews, 190, 85-101.
https://doi.org/10.1007/s11214-014-0134-7
[20] Angelopoulos, M., Redman, D., Pollard, W.H., et al. (2014) Lunar Ground Penetrating Radar: Minimizing Potential Data Artifacts Caused By Signal Interaction with a Rover Body. Advances in Space Research, 54, 2059-2072.
[21] 王莹瑛, 方广有. 基于星载双天线的月球表面杂波抑制方法研究[J]. 计算机仿真, 2011, 28(10): 39-47.
[22] 曹志国. 次表层探测雷达成像仿真技术研究[D]: [硕士论文]. 长沙: 国防科学技术大学, 2013.
[23] Lai, J., Xu, Y., Zhang, X. and Tang, Z. (2016) Structural Analysis of Lunar Subsurface With Chang’E-3 Lunar Penetrating Radar. Planetary & Space Science, 120, 96-102.
[24] 高云泽, 董泽华, 方广有, 纪奕才, 周斌. 嫦娥三号测月雷达第一通道数据处理与分析[J]. 雷达学报, 2015(5): 518-526.
[25] Fa, W., Zhu, M., Liu, T., et al. (2016) Regolith Stratigraphy At the Chang’E-3 Landing Site as Seen by Lunar Penetrating Radar. Geophysical Research Letters, 42, 10179-10187.
[26] Xiao, L., Zhu, P., Fang, G., et al. (2007) A Young Multilayered Terrane of the Northern Mare Imbrium Revealed By Chang’E-3 Mission. Science, 347, 1226-1229.
https://doi.org/10.1126/science.1259866
[27] Bianchi, G. (2007) Electronic Filter Simulation & Design.
[28] Ifeachor, E.C., Jervis, B.W. and O’Reilly, J.O. (1995) Digital Signal Processing: A Practical Approach. IEEE Colloquium on Teaching of Digital Signal Processing. Addison-Wesley Longman Publishing Co. Inc., Boston, 6/1-6/8.
https://doi.org/10.1049/ic:19950210
[29] 雷学莲. 雷达探月仿真与实测数据分析[D]: [硕士学位论文]. 武汉: 华中科技大学, 2014.
[30] Zisk, S.H., Pettengill, G.H. and Catuna, G.W. (1974) High-Resolution Radar Maps of the Lunar Surface at 3.8-cm Wavelength. Earth, Moon, and Planets, 10, 17-50.
[31] Hagfors, T., Nanni, B. and Stone, K. (1968) Aperture Synthesis in Radar Astronomy and Some Applications to Lunar and Planetary Studies. Radio Science, 3, 491.
https://doi.org/10.1002/rds196835491
[32] Fa, W.Z. and Wieczorek, M.A. (2012) Regolith Thickness over the Lunar Nearside: Results from Earth-Based 70-cm Arecibo Radar Observations. Icarus, 218, 771-787.
[33] Shkuratov, Y.G. and Bondarenko, N.V. (2001) Regolith Layer Thickness Mapping of the Moon by Radar and Optical Data. Icarus, 149, 329-338.
https://doi.org/10.1006/icar.2000.6545
[34] Jaumann, R., Hiesinger, H., Anand, M., et al. (2012) Geology, Geochemistry, and Geophysics of the Moon: Status of Current Understanding. Planetary & Space Science, 74, 15-41.
[35] Kobayashi, T., Kim, J.H., Lee, S.R., et al. (2010) Simultaneous Observation of Lunar Radar Sounder and Laser Altimeter of Kaguya for Lunar Regolith Layer Thickness Estimate. IEEE Geoscience & Remote Sensing Letters, 7, 435- 439.
https://doi.org/10.1109/LGRS.2009.2038499
[36] Strangway, D.W., Pearce, G.W. and Olhoeft, G.R. (1977) Magnetic and Dielectric Properties of Lunar Samples. NASA Special Publication, 370.
[37] Peeples, W.J., Sill, W.R., May, T.W., et al. (1978) Orbital Radar Evidence for Lunar Subsurface Layering in Maria Serenitatis and Crisium. Journal of Geophysical Research Atmospheres, 83, 3459-3468.
https://doi.org/10.1029/JB083iB07p03459
[38] Watson, K., Murray, B.C. and Brown, H. (1961) The Behavior of Volatiles on the Lunar Surface. Journal of Geophysical Research Atmospheres, 66, 3033-3045.
[39] 张橙华. 月球勘探者号及其科学成果[J]. 物理教师, 1999, 20(2): 34-35.
[40] Nozette, S., Lichtenberg, C.L., Spudis, P., et al. (1996) Clementine Bi-Static Radar Experiment: Preliminary Results. Lunar and Planetary Science, 27, 967.
[41] Spudis, P.D., Bussey, B., Lichtenberg, C., et al. (2009) Mini-SAR: An Imaging Radar for the Chandrayaan-1 Mission to the Moon. Current Science, 96, 533-539.
[42] Mohan, S., Das, A., Pandey, D. and Saran, S. (2011) Results of the Mini SAR Imaging Radar, Chandrayaan-1 Mission. Planetary Science and Exploration, Chandrayaan-1 Meeting, Ahmedabad.
[43] Tsang, L., Jin, A.K. and Shin, R.T. (1985) Theory of Microwave Remote Sensing. Wiley, New York.
[44] 郑永春, 王世杰, 刘春茹, 李雄耀, 欧阳自远. 月球水冰探测进展[J]. 地学前缘, 2004: 573-578.
[45] Stacy, N.J.S., Campbell, D.B. and Ford, P.G. (1997) Arecibo Radar Mapping of the Lunar Poles: A Search for Ice Deposits. Science, 276, 1527-1530.
https://doi.org/10.1126/science.276.5318.1527
[46] Thomson, B.J., Bussey, D.B.J., Neish, C.D., et al. (2012) An Upper Limit for Ice in Shackleton Crater as Revealed by LRO Mini-RF Orbital Radar. Geophysical Research Letters, 39, L14201.
https://doi.org/10.1029/2012gl052119
[47] Colaprete, A., Schultz, P., Heldmann, J., et al. (2010) Detection of Water in the LCROSS Ejecta Plume. Science, 330, 463.
https://doi.org/10.1126/science.1186986
[48] Spudis, P.D., Bussey, D.B.J., Baloga, S.M., et al. (2013) Evidence for Water Ice on the Moon: Results for Anomalous Polar Craters from the LRO Mini-RF Imaging Radar. Journal of Geophysical Research Planets, 118, 2016-2029.
https://doi.org/10.1002/jgre.20156
[49] Hardgrove, C., Bell, J., Thangavelautham, J., et al. (2015) The Lunar Polar Hydrogen Mapper (LunaH-Map) Mission: Mapping Hydrogen Distributions in Permanently Shadowed Regions of the Moon’s South Pole. Annual Meeting of the Lunar Exploration Analysis Group, Columbia, 20-22 October 2015, 2035.
[50] Wang, Q. and Liu, J. (2016) A Chang’E-4 Mission Concept and Vision of Future Chinese Lunar Exploration Activities. Acta Astronautica, 127, 678-683.
[51] Nielsen, E. (2004) Mars Express and MARSIS. Space Science Reviews, 111, 245-262.
https://doi.org/10.1023/B:SPAC.0000032712.05204.5e
[52] Picardi, G., Plaut, J.J., Biccari, D., et al. (2005) Radar Soundings of the Subsurface of Mars. Science, 310, 1925.
https://doi.org/10.1126/science.1122165
[53] Brothers, T.C., Holt, J.W. and Spiga, A. (2015) Planum Boreum Basal Unit Topography, Mars: Irregularities and Insights from SHARAD. Journal of Geophysical Research Planets, 120, 1357-1375.
https://doi.org/10.1002/2015JE004830
[54] Falkner, P., Peacock, A. and Schulz, R. (2007) 10.18-Instrumentation for Planetary Exploration Missions. Treatise on Geophysics, 17, 595-641.
[55] Heggy, E., Fong, T., Kring, D.A., et al. (2009) Potential of Probing the Lunar Regolith Using Rover-Mounted Ground Penetrating Radar: Moses Lake Dune Field Analog Study.
[56] Russell, P.S., Grant, J.A., Williams, K.K., et al. (2010) Ground Penetrating Radar Field Studies of Lunar-Analog Geologic Settings and Processes: Barringermeteor Crater and Northern Arizona Volcanics. 42nd Lunar and Planetary Science Conference, Woodlands, March 7-11 2011, Article No. 2097.