GST  >> Vol. 5 No. 2 (April 2017)

    基于提升小波的光流估计算法
    Optical Flow Estimation Algorithm Based on Shift Wavelet Transform

  • 全文下载: PDF(806KB) HTML   XML   PP.40-46   DOI: 10.12677/GST.2017.52006  
  • 下载量: 707  浏览量: 2,037   科研立项经费支持

作者:  

耿利川,耿则勋:许昌学院,城乡规划与园林学院,河南 许昌;许昌学院,无人机低空遥感技术协同创新中心,河南 许昌

关键词:
提升小波运动估计光流多分辨分析Wavelet Transform Motion Estimation Optical Flow Multi-Resolution

摘要:

针对光流估计算法在图像间的位移量较大时,配准精度不高的问题,提出了提升小波多分辨分析图像光流估计算法。利用提升小波对视频图像进行多层小波分解,对不同尺度上图像进行光流估算,提高了光流估计算法在位移量较大时的配准精度。实验结果表明,该算法能够快速实现小位移和准确的实现大位移的运动估计,验证了本文算法的正确性。

In order to improve the estimation precision of displacement among low resolution images, a wavelet based optical flow estimation algorithm is promoted. We calculated the image optical flow at different scales to improve the registration accuracy of optical flow estimation algorithm with large displacement. The results show that this improved algorithm achieves high precision pixel displacement estimation.

文章引用:
耿利川, 耿则勋. 基于提升小波的光流估计算法[J]. 测绘科学技术, 2017, 5(2): 40-46. https://doi.org/10.12677/GST.2017.52006

参考文献

[1] 解凯, 郭恒业, 张田文. 图像Mosaics技术综述[J]. 电子学报, 2004, 32(4): 630-634.
[2] Ng, M.K. and Bose, N.K. (2003) Mathematical Analysis of Super-Resolution Methodology. IEEE Signal Processing Magazine, 20, 62.
[3] Irani, M. and Peleg, S. (1991) Improving Resolution by Image Registration. CVGIP: Graphical Models and Image, 53, 231.
[4] Huang, Y., Ma, S. and Shen, C. (2003) Predictive Line Search: An Efficient Motion Estimation Algorithm for MPEG-4 Encoding Systems on Multimedia Processors. IEEE Trans on Circuits and Systems for Video Technology, 13, 111.
[5] Hornb, S.B. (1981) Determining Optical Flow. Artificial Intelligence, 17, 185.
[6] Horn, B.K.P. and Schunck, B.G. (1981) Determining Optical Flow. Artificial Intelligence, 17, 185-203.
[7] Lucas, B.D. and Kanade, T. (1981) An Iterative Image Registration Technique with an Application to Stereo Vision. International Joint Conference on Artificial Intelligence.
[8] Fleet, D.J. and Jepson, A.D. (1990) Computation of Component Image Velocity from Local Phase Information. International Journal of Computer Vision, 5, 77-104.
[9] Weber, J. and Malik, J. (1994) Robust Computation of the Optical Flow in Multi-Scale Differential Framework. International Journal of Computer Vision, 2, 5-19.
[10] Bernard, C. (1998) Wavelets and Ill-Posed Problems: Optical Flow and Scattered Data Interpolation. Ecole Polytechnique, France.
[11] 董长虹, 高志, 余啸海. Matlab小波分析工具箱原理与应用[M]. 北京: 国防工业出版社, 2004: 108-127.
[12] Sweldens, W. (1996) The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets. Application Computer Harmonic Analysis, 3, 186-200.
[13] Sweldens, W. (1998) The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal on Mathematical Analysis, 29, 511-546.
[14] 郑世友, 费树岷, 龙飞. 基于小波提升框架的图像序列中运动目标检测算法[J]. 中国图象图形学报, 2005, 10(5): 596-602.
[15] 徐韶华, 李红. 基于小波提升框架及小波能量的红外弱目标检测方法[J]. 红外技术, 2006, 28(11): 669-672.