地下水源热泵回灌堵塞预测模型的研究进展
Research Progress on the Recharge Clogging Prediction Model of Underground Water Heat Pump
摘要: 本文简要论述了物理堵塞、化学堵塞以及生物堵塞的堵塞机理,介绍了三种堵塞类型的堵塞预测模型的应用现状。物理堵塞预测使用了颗粒运移–沉积模型预测了堵塞的发生发展过程;用了浓度模型和吸附–解析模型说明了流速与悬浮颗粒沉积量的关系。化学堵塞预测通过建立悬浮物表面堵塞模型,预测了悬浮物的发展过程及完全堵塞的时间;用了均质微裂隙介质堵塞模型,说明了堵塞动力学与化学反应速率和孔隙率的关系。生物堵塞预测运用了Taylor模型、Seki模型和Clement模型,以上三种模型说明了生物膜厚度与渗透率的关系。研究建立有效的地下水源热泵回灌堵塞模型,对地下水源热泵回灌堵塞问题具有重大意义。
Abstract: Physical and chemical and biological clogging mechanisms were discoursed in the article. The application of the three types of clogging prediction models was introduced. Particle migration- deposition model for physical clogging prediction was used to predict the occurrence and devel-opment of the clogging. The relationship between flow velocity and sediment concentration of suspended particles was explained by concentration model and adsorption-analytic model. In chemical clogging prediction aspect, the development process of suspended solids and the clog-ging time were predicted by the suspended matter surface clogging model. The relationship be-tween plugging kinetics and chemical reaction rate and porosity was explained by the model of homogeneous microfissure media. Taylor model, Seki model and Clement model were used to explain the relationship between biofilm thickness and permeability in biological clogging prediction aspect. Research on the establishment of an effective underground water heat pump model was of great significance to the clogging of the underground water pump.
文章引用:藏春月, 亢涵, 潘俊, 王娅伶, 秦春怡, 忻晓贇, 杨昊天, 郑博元. 地下水源热泵回灌堵塞预测模型的研究进展[J]. 环境保护前沿, 2017, 7(2): 147-154. https://doi.org/10.12677/AEP.2017.72022

参考文献

[1] 倪龙, 封家平, 马最良. 地下水源热泵的研究现状与进展[J]. 建筑热能通风空调, 2004, 23(2): 26-31.
[2] 惠一峰. 地下水源热泵系统水源侧故障预测诊断研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2014.
[3] 王子佳. 城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[4] McDowell, B.L.M., Hunt, J.R. and Sitar, N. (1986) Particle Transport through Porous Media. Water Resources Research, 22, 1901-1921.
https://doi.org/10.1029/WR022i013p01901
[5] Pavelic, P., Dillon, P.J. and Barry, K.E. (1998) Well Clogging Effects Determined from Mass Balances and Hydraulic Response at a Storm Water ASR Site. Third International Symposium on Artificial Recharge of Groundwater, Amsterdam, 21-25 September 1998, 61-66.
[6] Vigneswaran, S. and Suazo, R.B. (1987) A Detailed Investigation of Physical and Biological Clogging during Artificial Recharge. Water, Air, and Soil Pollution, 35, 119-140.
https://doi.org/10.1007/BF00183848
[7] 刘雪玲, 朱佳玲. 新近系砂岩地热回灌堵塞问题的探讨[J]. 水文地质工程地质, 2009(5): 138-141.
[8] Pavelic, P., Mucha, M., Dillon, P., et al. (2005) Laboratory Column Study on the Effect of Ponding Depth on Infiltration Rate during SAT. 5th International Symposium, Aquifer Recharge, Berlin, 11-16 June 2005, 6.
[9] Pavelic, P., Mucha, M., Dillon, P.J., et al. (2011) Laboratory Assessment of Factors Affecting Soil Clogging of Soil Aquifer Treatment Systems. Water Research, 45, 3153-3163.
https://doi.org/10.1016/j.watres.2011.03.027
[10] 康然然. 沈阳城区水源热泵回灌堵塞机理及防治研究[D]: [硕士学位论文]. 沈阳: 沈阳建筑大学, 2012.
[11] 杜新强, 冶雪艳, 路莹, 等. 地下水人工回灌堵塞问题研究进展[J]. 地球科学进展, 2009, 24(8): 973-980.
[12] Pavelic, P., Vanderzalm, J., Dillon, P.J., et al. (2007) Assessment of the Potential for Well Clogging Associated with Salt Water Interception and Deep Injection at Chowilla, SA. Final Report to Department of Water, land, Biodiversity and Conservation.
[13] 汤亚伯, 李君加. 回灌井中铁、锰的暂时性寓集机理初探[J]. 上海环境科学, 1986(3): 34-36.
[14] 李晓. 天然河床渗滤取水技术研究[D]: [博士学位论文]. 成都: 西南交通大学, 2003.
[15] Baveye, P., Vandeevivere, P., Hoyle, B.L., et al. (1998) Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils in Acquifer Materials. Critical Reviews in Environment Science & Technology, 23, 123- 191.
https://doi.org/10.1080/10643389891254197
[16] 路莹. 北京平谷地区雨洪水地下回灌堵塞机理分析与模拟研究[D]: [硕士学位论文]. 长春: 吉林大学, 2009.
[17] Taylor, S.W., Milly, P.C.D. and Jaffe, P.R. (1990) Biofilm Growth and the Related Changes in the Physical-Properties of a Porous-Medium.2.Permeabilityty. Water Resource Research, 26, 2162-2169.
[18] 单蓓蓓. 含水层物理堵塞的回灌实验与数值模拟[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2013.
[19] 赵军, 张呈远, 刘泉声. 水源热泵回灌井悬浮颗粒运移和沉积物理特性试验模型研究[J]. 岩土力学与工程学报, 2014, 33(2): 257-263.
[20] Bedrikovetsky, P., Zeinijahromi, A., Siqueira, F.D., et al. (2012) Particle Detachment under Velocity Alternation during Suspension Transport in Porous Media. Transport in Porous Media, 91, 173-197.
https://doi.org/10.1007/s11242-011-9839-1
[21] Magnico, P. (2000) Impact of Dynamic Processes on the Coupling between Fluid Transport and Precipitate Deposition. Chemical Engineering Science, 55, 4323-4338.
https://doi.org/10.1016/S0009-2509(00)00047-6
[22] 杨靖, 叶淑君, 吴吉春. 生物膜对饱和多孔介质渗透性影响的实验和模型研究[J]. 环境科学, 2011, 32(5): 1364- 1371.
[23] Seki, K. and Miyazaki, T. (2001) A Mathematical Model for Biological Clogging of Uniform Porous Media. Water Resources Research, 37, 2995-2999.
https://doi.org/10.1029/2001WR000395
[24] 路莹, 杜新强, 范伟, 等. 地下水人工回灌过程中微生物堵塞的预测[J]. 湖南大学学报(自然科学版), 2012, 39(1): 77-80.
[25] Clement, T. Hooker, B. and Skeen, R. (1996) Macroscopic Models for Predicting Changes in Saturated Porous Media Properties Caused by Microbial Growth. Groundwater, 34, 934-942.
https://doi.org/10.1111/j.1745-6584.1996.tb02088.x
[26] 江林. 可渗透反应墙渗透性能变化分析与数值模拟及防治措施的研究[D]: [硕士学位论文]. 芜湖: 安徽工程大学, 2015.