大型压缩式高温热泵技术研究及应用进展
A Review of Large-Scale Vapor Compression High Temperature Heat Pump Research and Application
DOI: 10.12677/SE.2017.72006, PDF, HTML, XML,  被引量 下载: 1,860  浏览: 4,009 
作者: 张立钦, 唐道轲, 付 林*:清华大学建筑节能研究中心,北京;李丁丁, 苗 青:北京清华同衡规划设计研究院有限公司,北京
关键词: 压缩式高温热泵热力循环高温工质VCHTHP Thermodynamic Cycle High Temperature Refrigerant
摘要: 压缩式高温热泵是应用广泛的节能环保技术,尤其是大型热泵机组,近年来随着能源结构调整和环境保护要求的不断提高而日益受到重视。本文分析了大型压缩式高温热泵的特点和必要性,并从该项技术的两个方面,即热力循环和高温工质,分别阐述了近年来大型压缩式高温热泵的研究现状,指出各类优化常规循环及低GWP的HFC及HFO类替代高温工质是今后一段时间该项技术研究和应用的重点方向,而变温循环和非共沸高温混合工质则具有良好的发展前景,需要进一步深入。此外简述了研究机构和设备制造商在大型压缩式高温热泵应用方面所取得的进展。
Abstract: Vapor compression high temperature heat pump (VCHTHP), which is an environmental friendly and energy conservation technology, is widely applied, especially the large-scale sets. In this ar-ticle, the characteristics and necessity of large-scale VCHTHP were elaborated, and the research progress was reviewed and analyzed in terms of thermodynamic cycles and alternative refrige-rants. It demonstrated that modified regular cycles and low GWP HFC & HFOs alternatives are the key parts for recent research and application of Large-scale VCHTHP, and the irreversible Lorenz cycle and non-azeotropic refrigerants have good prospects. At last, some application cases were also reviewed.
文章引用:张立钦, 唐道轲, 李丁丁, 苗青, 付林. 大型压缩式高温热泵技术研究及应用进展[J]. 可持续能源, 2017, 7(2): 49-59. https://doi.org/10.12677/SE.2017.72006

参考文献

[1] 中国机械工业联合会. GB/T 25861-2010, 蒸气压缩循环水源高温热泵机组[S]. 北京: 中国标准出版社, 2011.
[2] 中国机械工业联合会. GB/T 19409-2013, 水(地)源热泵机组[S]. 北京: 中国标准出版社, 2014.
[3] 方豪. 低品位工业余热应用于城镇集中供暖关键问题研究[D]: [博士学位论文]. 北京: 清华大学, 2015.
[4] Park, C., Lee, H., Hwang, Y., et al. (2015) Recent Advances in Vapor Compression Cycle Technologies. International Journal of Refrigeration, 60, 118-134.
https://doi.org/10.1016/j.ijrefrig.2015.08.005
[5] Kondou, C. and Koyama, S. (2015) Thermodynamic Assessment of High-Temperature Heat Pumps Using Low-GWP HFO Refrigerants for Heat Recovery. International Journal of Refrigeration, 53, 126-141.
https://doi.org/10.1016/j.ijrefrig.2014.09.018
[6] Lorentzen, G. (1994) Revival of Carbon Dioxide as a Refrigerant. International Journal Refrigeration, 17, 293-301.
https://doi.org/10.1016/0140-7007(94)90059-0
[7] Pitarch, M., Navarro-Peris, E., Gonzalvez, J., et al. (2016) Analysis and Optimisation of Different Two-Stage Transcritical Carbon Dioxide Cycles for Heating Applications. International Journal of Refrigeration, 70, 235-242.
https://doi.org/10.1016/j.ijrefrig.2015.08.013
[8] Groll, E. and Kim, J.-H. (2007) Review of Recent Advances toward Transcritical CO2 Cycle Technology. HVAC&R Research, 13, 499-520.
https://doi.org/10.1080/10789669.2007.10390968
[9] 王侃宏, 马一太, 杨昭, 等. CO2跨临界循环高压侧压力控制的热力学分析[J]. 工程热物理学报, 2000, 21(5): 537-540.
[10] Yang, D., Song, Y., Cao, F., et al. (2016) Theoretical and Experimental Investigation of a Combined R134a and Transcritical CO2. International Journal of Refrigeration, 72, 156-170.
https://doi.org/10.1016/j.ijrefrig.2016.07.016
[11] Song, Y., Wang, J., Cao, F., et al. (2016) Experimental Investigation on a Capillary Tube Based Transcritical CO2 Heat Pump System. Applied Thermal Engineering, 112,184-189.
https://doi.org/10.1016/j.applthermaleng.2016.10.033
[12] Yang, L., Li, H., Cai, S.W., et al. (2015) Minimizing COP Loss from Optimal High Pressure Correlation for Transcritical CO2 Cycle. Applied Thermal Engineering, 89, 656-662.
https://doi.org/10.1016/j.applthermaleng.2015.06.023
[13] 梅沢修一, 上田憲治, 福島亮, 等. 高温高圧水を供給するヒートポンプの乾燥工程への適用 [J]. 日本機械学会論文集B編, 2012, 78: 435-439.
[14] 梅沢修一, 島田寛之, 宮本潤, 等. 排熱利用型高温ヒートポンプの開発[J]. 日本機械学会論文集B編, 2013, 79(799): 423-430.
[15] Yu, J., Xu, Z. and Tian, G. (2010) A Thermodynamic Analysis of a Transcritical Cycle with Refrigerant Mixture R32/R290 for a Small Heat Pump Water Heater. Energy & Buildings, 42, 2431-2436.
https://doi.org/10.1016/j.enbuild.2010.08.016
[16] 华小龙. 非共沸混合工质制冷空调循环的发展及应用前景[J]. 制冷技术, 1991(1): 19-25.
[17] Cao, X., Zhang, C.-L. and Zhang, Z.-Y. (2017) Stepped Pressure Cycle—A New Approach to Lorenz Cycle. International Journal of Refrigeration, 74, 281-292.
https://doi.org/10.1016/j.ijrefrig.2016.10.017
[18] 赵力. 高温热泵在我国的应用及研究进展[J]. 制冷学报, 2005, 26(2): 8-13.
[19] 陈恒, 张世程, 孙鹏, 等. 中高温热泵技术在工业余热回收中的应用[J]. 中外能源, 2013, 18(11): 94-97.
[20] 姚远, 龚宇烈, 陆振能, 等. 高温热泵及热泵蒸汽机的研究进展[J]. 新能源进展, 2014(3): 190-196.
[21] Mota-Babiloni, A., Navarro-Esbrí, J., Molés, F., et al. (2016) A Review of Refrigerant R1234ze(E) Recent Investigations. Applied Thermal Engineering, 95, 211-222.
https://doi.org/10.1016/j.applthermaleng.2015.09.055
[22] Honeywell International Inc. (2012) Honeywell SolsticeTM yf Refrigerants. http://www.honeywell-refrigerants.com/europe/wp-content/uploads/2013/03/honeywell-solstice-yf-technical-bulletin.pdf
[23] Kontomaris, K., Zero, O.D.P. and Low, G.W.P. (2013) Working Fluids for High Temperature Heating from Low Temperature Heat: DR-14, DR-12 and DR-2. Proceedings of the XV European Conference on The Latest Technologies in Air Conditioning and Refrigeration Industry, Milan, 7-8.
[24] Koyama, S., Takata, N. and Fukuda, S. (2010) Drop-In Experiments on Heat Pump Cycle Using HFO-1234ze(E) and Its Mixtures with HFC-32. Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, IN, Paper 1155.
[25] Fukuda, S., Kondou, C., Takata, N., et al. (2014) Low GWP Refrigerants R1234ze(E) and R1234ze(Z) for High Temperature Heat Pumps. International Journal of Refrigeration, 40, 161-173.
https://doi.org/10.1016/j.ijrefrig.2013.10.014
[26] Domanski, P.A., Brown, J.S., Heo, J., et al. (2014) A Thermodynamic Analysis of Refrigerants: Performance Limits of the Vapor Compression Cycle. International Journal of Refrigeration, 38, 71-79.
https://doi.org/10.1016/j.ijrefrig.2013.09.036
[27] Liu, N., Shi, L., Han, L., et al. (2005) Moderately High Temperature Water Source Heat-Pumps Using a Near-Azeo- tropic Refrigerant Mixture. Applied Energy, 80, 435-447.
https://doi.org/10.1016/j.apenergy.2004.02.005
[28] Shi, L., Zan, C. (2008) Research Methods and Performance Analysis for the Moderately High Temperature Refrigerant. Science in China Series E: Technological Sciences, 51, 1087-1095.
https://doi.org/10.1007/s11431-008-0143-4
[29] Li, T.X., Guo, K.H. and Wang, R.Z. (2002) High Temperature Hot Water Heat Pump with Non-Azeotropic Refrigerant Mixture HCFC-22/HCFC-141b.. Energy Conversion & Management, 43, 2033-2040.
https://doi.org/10.1016/S0196-8904(01)00150-9
[30] Pan, L., Wang, H., Chen, Q., et al. (2011) Theoretical and Experimental Study on Several Refrigerants of Moderately High Temperature Heat Pump. Applied Thermal Engineering, 31, 1886-1893.
https://doi.org/10.1016/j.applthermaleng.2011.02.035
[31] Zhang, S., Wang, H. and Guo, T. (2010) Experimental Investigation of Moderately High Temperature Water Source Heat Pump with Non-Azeotropic Refrigerant Mixtures. Applied Energy, 87, 1554-1561.
https://doi.org/10.1016/j.apenergy.2009.11.001
[32] Venkatarathnam, G., Mokashi, G. and Murthy, S.S. (1996) Occurrence of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures. International Journal of Refrigeration, 19, 361-368.
https://doi.org/10.1016/S0140-7007(96)00023-0
[33] Venkatarathnam, G. and Murthy, S.S. (1999) Effect of Mixture Composition on the Formation of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures. International Journal of Refrigeration, 22, 205-215.
https://doi.org/10.1016/S0140-7007(98)00056-5
[34] Karlsson, T. and Vamling, L. (2005) Flow Fields in Shell-and-Tube Condensers: Comparison of a Pure Refrigerant and a Binary Mixture. International Journal of Refrigeration, 28, 706-713.
https://doi.org/10.1016/j.ijrefrig.2004.12.008
[35] 邱金友, 张华, 祁影霞, 等. 新型制冷剂R1234ze(E)及其混合工质研究进展[J]. 制冷学报, 2015, 36(3): 9-16.
[36] Jakobs, R., Cibis, D. and Laue, H.J. (2010) Status and Outlook: Industrial Heat Pumps. Proceedings of the International Refrigeration and Air Conditioning Conference, West Lafayette, Paper 1081.
[37] 佚名. 江森自控大型余热回收热泵荣获中国建筑学会科技进步奖[J]. 上海建材, 2016(5): 23-23.
[38] 王凯, 曹锋, 邢子文. 一种新型余热回收高温热泵机组的性能研究[J]. 西安交通大学学报, 2008, 42(10): 1309- 1312.
[39] Wang, K., Cao, F., Wang, S., et al. (2010) Investigation of the Performance of a High-Temperature Heat Pump Using Parallel Cycles with Serial Heating on the Water Side. International Journal of Refrigeration, 33, 1142-1151.
https://doi.org/10.1016/j.ijrefrig.2010.04.016
[40] 刘华, 张治平, 王升. 高效离心式热泵在集中供热中的应用[J]. 暖通空调, 2015, 45(12): 44-48.
[41] 胡斌, 王毅, 王凯,等. 高温热泵技术在工业制冷领域的应用[J]. 制冷学报, 2011, 32(5): 1-5.
[42] 神钢集团. 世界首次将可供应120~165℃蒸汽的热泵系统实现产品化[EB/OL]. http://www.kobelco.co.jp/chinese/releases/1193477_15016.html, 2011.
[43] 苗承武, 吴明利, 刘文多. 采用热泵技术回收油田污水余热[J]. 石油规划设计, 2007, 18(2): 22-24.
[44] 田磊, 史琳, 吴静, 等. 再生水源热泵应用于污泥厌氧处理的能流分析[J]. 华北电力大学学报(自然科学版), 2009, 36(4): 47-50.
[45] 中华人民共和国国家发展和改革委员会. 国家发展改革委、住房城乡建设部关于印发《余热暖民工程实施方案》的通知[EB/OL]. http://www.sdpc.gov.cn/zcfb/zcfbtz/201511/t20151104_757519.html, 2015-10-29.