基于重复控制的旋转运动柔性臂建模和实验研究
Modeling and Experiment of a Rotary Flexible Arm Based on Repetitive Controllers
DOI: 10.12677/DSC.2017.62011, PDF, HTML, XML, 下载: 1,407  浏览: 3,199  国家自然科学基金支持
作者: 杨子涵, 江 俊:西安交通大学机械结构强度与振动国家重点实验室,陕西 西安
关键词: 旋转运动柔性臂齿轮传动PID重复控制Rotary Flexible Arm Gear Drive PID Repetitive Control
摘要: 为了研究重复控制对于旋转运动柔性臂控制精度的影响,本文建立了一个旋转运动柔性臂的动力学数值模型,并且特别考虑了齿轮传动机构对系统的影响。通过对动力学模型的仿真结果发现:齿轮传动机构的非线性是旋转运动柔性臂跟踪连续的周期信号时产生振动的原因。基于这一结论,一个基于重复控制补偿算法的PID控制器被用在Quanser公司的Rotary Flexible Link中去跟随给定运动状态。仿真结果和实验结果验证了重复控制可以提高旋转运动柔性臂的跟踪精度。
Abstract: In this paper, to study the effect of the repetitive control on the control accuracy of a rotary flexible arm, the dynamic numerical model of a rotary flexible arm is established, and especially the effect of the gear drive to this system is considered. From simulation results of dynamic model, we find that the nonlinear of the gear drive causes the vibration of the rotary flexible arm when tracking periodic continuous signal is found. Based on the conclusion, a PID controller based on repetitive control compensation algorithm is applied to implement the Quanser’s Rotary Flexible Link to follow a given motion signal. The simulation and experimental results validate the repetitive control will enhance the tracking accuracy of the rotary flexible link.
文章引用:杨子涵, 江俊. 基于重复控制的旋转运动柔性臂建模和实验研究[J]. 动力系统与控制, 2017, 6(2): 82-90. https://doi.org/10.12677/DSC.2017.62011

参考文献

[1] 方建士, 章定国. 旋转悬臂梁的刚柔耦合动力学建模与频率分析[J]. 计算力学学报, 2012, 29(3): 333-339.
[2] 蔡国平, 洪嘉振. 旋转运动柔性梁的假设模态方法研究[J]. 力学学报, 2005, 37(1): 48-56.
[3] 邱志成. 旋转柔性梁系统振动频响特性分析及振动抑制[J]. 振动与冲击, 2008, 27(6): 75-80.
[4] Feliu, V., Castillo, F.J., Ramos, F. and Somolinos, J.A. (2012) Robust Tip Trajectory Tracking of a Very Lightweight Single-Link Flexible Arm in Presence of Large Payload Changes. Mechatronics, 22, 594-613.
[5] Morales, R., Feliu, V. and Jaramillo, V. (2012) Position Control of Very Lightweight Single-Link Flexible Arms with Large Payload Variations by Using Disturbance Observers. Robotics and Autonomous Systems, 60, 532-547.
[6] Rairez-Neria, M., Ochoa-Otrega, G. and Lozada-Castillo, N. (2016) On the Robust Trajectory Tracking Task for Flexible-Joint Robotic Arm with Unmodeled Dynamics. IEEE Access, 4, 7816-7827.
[7] Agee, J.T., Bingul, Z. and Kizir, S. (2014) Tip Trajectory Control of a Flexible-Link Manipulator Using an Intelligent Proportional Integral (iPI) Controller. Transactions of the Institute of Measurement and Control, 36, 673-682.
https://doi.org/10.1177/0142331213518577
[8] Tijani, I.B., Akmeliawati, R., Muthalif, A.G.A. and Legowo, A. (2011) Optimization of PID Controller for Flexible Link System Using a Pareto-Based Multi-Objective Differential (PMODE) Evolution. 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, 17-19 May 2011, 1-6.
[9] Chen, L.-X. and Sun, J.-Q. (2014) Multi-Objective Optimal Design and Experimental Validation of Tracking Control of a Rotating Flexible Beam. Journal of Sound and Vibration, 333, 4415-4426.
[10] Nikpay, N., Aliyari Shoorehdeli, M. and Teshnehlab, M. (2011) Neural-Fuzzy Control of Quanser Flexible Link. 11th International Con-ference on Hybrid Intelligent Systems (HIS), Melacca, 5-8 December 2011, 436-441.
[11] Kherraz, K., Hamerlain, M. and Achour, N. (2015) Robust Neuro-Fuzzy Sliding Mode Controller for a Flexible Robot Manipulator. International Journal of Robotics and Automation, 30.
https://doi.org/10.2316/Journal.206.2015.1.206-3994
[12] Nanos, K. and Papadopoulos, E.G. (2015) On the Dy-namics and Control of Flexible Joint Space Manipulators. Control Engineering Practice, 45, 230-243.
[13] 马亚丽, 靳宝全, 程珩. 重复控制补偿的PID电液伺服位置控制[J]. 流体传动与控制, 2010(2): 31-33.
[14] 刘柏林, 林建泉, 孙家文. 基于嵌入式重复控制的三相PWM整流器控制研究[J]. 通信电源技术, 2017(1): 7-9.