PM  >> Vol. 7 No. 3 (May 2017)

    四阶不定微分算子非实特征值的估计
    Estimates on the Non-Real Eigenvalues of Fourth Order Indefinite Differential Operators

  • 全文下载: PDF(328KB) HTML   XML   PP.141-148   DOI: 10.12677/PM.2017.73017  
  • 下载量: 188  浏览量: 268   国家自然科学基金支持

作者:  

胡帆,孙炯,李昆,郝晓玲:内蒙古大学数学科学学院,内蒙古 呼和浩特

关键词:
四阶微分算子非实特征值不定权函数Fourth Order Differential Operators Non-Real Eigenvalue Indefinite Weight Function

摘要:

本文研究了一类关于四阶微分算子非实特征值的估计。利用算子理论和经典分析,研究了由权函数变号产生的不定微分算子的特征值问题,对权函数具有多个拐点时和只有一个拐点的情况分别进行了讨论,得到非实特征值实部和虚部的估计。

The present paper gives an estimate on the non-real eigenvalues for a class of fourth order differential operators. Using operator theory and classical analysis, we study the eigenvalue problem for indefinite differential operators produced by the signs of weight function, and discuss the cases of many turning points and a turning point for the weight function respectively, then we get the estimate on the real and imaginary parts of the non-real eigenvalues.

文章引用:
胡帆, 孙炯, 李昆, 郝晓玲. 四阶不定微分算子非实特征值的估计[J]. 理论数学, 2017, 7(3): 141-148. https://doi.org/10.12677/PM.2017.73017

参考文献

[1] Mingarelli, A.B. (1986) A Survey of the Regular Weighted Sturm-Liouville Problem—The Non-Definite Case. Mathematics, 109-137.
[2] Zettl, A. (2005) Sturm-Liouville Theory. American Mathematical Society, Mathematical Surveys and Monographs, 121,
[3] Haupt, O. (1915) Über eine Methode zum Beweis von oszillations Theoremen. Mathematische Annalen, 76, 67-104.
https://doi.org/10.1007/BF01458673
[4] Richardson, R.G.D. (1912) Theorems of Oscillation for Two Linear Differential Equations of Second Order with Two Parameters. Transactions of the American Mathematical Society, 13, 22-34.
https://doi.org/10.1090/S0002-9947-1912-1500902-8
[5] Atkinson, F.V. and Jabon, D. (1988) Indefinite Sturm-Liouville Problems. Kaper, H.G., Kwong, M.K. and Zettl, A., Eds., Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems, Argonne National Laboratory, Lemont, 31-45.
[6] Binding, P. and Volkmer, H. (1996) Eigencurves for Two-Parameter Sturm-Liouville Equations. SIAM Review, 38, 27-48.
https://doi.org/10.1137/1038002
[7] Fleckinger, J. and Mingarelli, A.B. (1984) On the Eigenvalues of Non-Definite Elliptic Operators. North-Holland Mathematics Studies, 92, 219-227.
https://doi.org/10.1016/S0304-0208(08)73696-X
[8] Turyn, L. (1980) Sturm-Liouville Problems with Several Parameters. Journal Differential Equations, 38, 239-259.
https://doi.org/10.1016/0022-0396(80)90007-8
[9] Curgus, B. and Langer, H. (1989) A Krein Space Approach to Symmetric Ordinary Differential Operators with an Indefinite Weight Functions. Journal Differential Equations, 79, 31-61.
https://doi.org/10.1016/0022-0396(89)90112-5
[10] Mingarelli, A.B. (1982) Indefinite Sturm-Liouville Problems. Lecture Notes in Mathematics, 964, 519-528.
https://doi.org/10.1007/BFb0065022
[11] Qi, J.G. and Chen, S.Z. (2014) A Priori Bounds and Existence of Non-Real Eigenvalues of Indefinite Sturm-Liouville Problems. Journal of Spectral Theory, 4, 53-63.
https://doi.org/10.4171/JST/61
[12] Xie, B. and Qi, J.G. (2013) Non-Real Eigenvalues of Indefinite Sturm-Liouville Problems. Journal Differential Equations, 255, 2291-2301.
https://doi.org/10.1016/j.jde.2013.06.013
[13] Behrndt, J., Chen, S.Z., Philipp, F. and Qi, J.G. (2013) Estimates on the Non-Real Eigenvalues of Regular Indefinite Sturm-Liouville Problems. Proceedings of the Royal Society of Edinburgh, 144, 1113-1126.
https://doi.org/10.1017/S0308210513001212