总磷限制下的藻类种群生长动态建模及稳定性研究
Algae Population Growth Dynamic Modeling and Stability Analysis under Phosphorus Limitation
DOI: 10.12677/AAM.2017.63026, PDF, HTML, XML, 下载: 1,706  浏览: 2,823  国家自然科学基金支持
作者: 于恒国, 段涵, 王奇:温州大学, 浙江 温州
关键词: 生态模型平衡点稳定性时滞总磷Ecological Model Equilibrium Point Stability Delay Total Phosphorus
摘要: 基于亚热带水库水体富营养化研究进程,本论文在动态建模过程中引入分布时滞来刻画水域生态系统中的时间延迟现象,构建了一类总磷限制下的藻类种群生长动态模型,对所建生态模型进行了一定的理论分析,建立了该生态模型边界平衡点渐近稳定的判断准则,明确了该生态模型具有这些特定动力学性态的一些关键参数阈值条件,这些研究工作为进一步预测吴家园水库营养盐动态演化趋势和揭示水域优势藻类种群生长动态规律提供了一定的理论基础。
Abstract: In this paper, firstly, on the basis of research progress of water eutrophication in subtropical reservoirs, the distributed delay is introduced to characterize time delay phenomenon of aquatic ecosystem in the process of algae population growth dynamic modeling, an algae population growth dynamic model under the restriction of total phosphorus has been structured. Secondly, some theoretical analysis on the ecological model have been investigated to establish some judgment criterions for the asymptotic stability of the boundary equilibrium points and define some critical parameter threshold conditions which can ensure that the ecological model has these specific dynamical states. Finally, these studies can provide certain theoretical basis for the further prediction of the nutrient dynamic evolution trend and the dominant algae population growth dynamic law in Wujiayuan reservoir.
文章引用:于恒国, 段涵, 王奇. 总磷限制下的藻类种群生长动态建模及稳定性研究[J]. 应用数学进展, 2017, 6(3): 225-231. https://doi.org/10.12677/AAM.2017.63026

参考文献

[1] Ryding, S. and Rast, W. (1989) The Control of Eutrophication of Lakes and Reservoirs. The Parthenon Publishing Group, Carforth.
[2] Qin, B.-Q. (2009) Lake Eutrophication: Control Countermeasures and Recyclings. Ecological Engineering, 35, 1569- 1573.
https://doi.org/10.1016/j.ecoleng.2009.04.003
[3] 高月香, 张永春. 水文气象因子对藻类爆发的影响[J]. 水科学与工程技术, 2006(2): 10-12.
[4] 赵磊, 刘永, 李玉照等. 胡泊生态系统稳定转换理论和驱动因子研究进展[J]. 生态环境科学: 2014, 23(10): 1697-1707.
[5] 徐云麟, 李立新, 李莉. 湖泊藻类生长动力学研究[J]. 北京大学学报(自然科学版), 1991, 27(6): 726-737.
[6] 刘玉生, 韩梅, 梁占彬, 林毅雄. 光照、温度和营养盐对滇池微囊藻生长的影响[J]. 环境科学研究, 1995, 8(6): 8-11.
[7] 于婷, 戴景峻, 雷腊梅, 彭亮. 温度、光照强度及硝酸盐对拟柱孢藻(Cylidrospermopsis Raciborskii N8)生长的影响[J]. 湖泊科学, 2014, 26(3): 441-446.
[8] 袁著涛, 董晓煜, 刘升平. 温度和光照对单细胞绿藻1102生长影响的研究[J]. 水产科学, 2014, 33(2): 121-126.
[9] 周慧敏, 冯剑丰, 朱琳, 李文娇. 温度、光照和磷酸盐脉冲输入对三角褐指藻的交互影响[J]. 中国环境科学, 2015, 35(1): 244-250.
[10] 高学庆, 任久长, 宗志祥, 蔡晓明. 铜绿微囊藻营养动力学研究[J]. 北京大学学报(自然科学版), 1994, 30(4): 462-469.
[11] 刘春光, 金相灿, 邱金泉, 等. 光照和磷的交互作用对两种淡水藻类生长的影响[J]. 中国环境科学, 2005, 25(1): 32-36.
[12] Bechet, Q., Shilton, A. and Guieysse, B. (2013) Modeling the Effects of Light and Temperature on Algae Growth: State of the Art and Critical Assessment for Productivity Prediction during Outdoor Cultivation. Biotechnology Advances, 31, 1648-1663.
https://doi.org/10.1016/j.biotechadv.2013.08.014
[13] Mei, Z.P., Finkel, Z.V. and Irwin, A.J. (2009) Light and Nutrient Availability Affect the Size-Scaling of Growth in Phytoplankton. Journal of Theoretical Biology, 259, 582-588.
https://doi.org/10.1016/j.jtbi.2009.04.018
[14] Yang, M., Zhao, W. and Xie, X. (2014) Effects of Nitrogen, Phosphorus, Iron and Silicon on Growth of Five Species of Marine Benthic Diatoms. Acta Ecological Sinica, 34, 311-319.
https://doi.org/10.1016/j.chnaes.2014.10.003
[15] Cunha, D.G.F. and Calijuri, M.C. (2011) Limiting Factors for Phytoplankton Growth in Subtropical Reservoirs: The Effect of Light and Nutrient Availability in Different Longitudinal Compartments. Lake and Reservoir Management, 27, 162-172.
https://doi.org/10.1080/07438141.2011.574974
[16] Lv, J., Wu, H.J. and Chen, M.Q. (2011) Effects of Nitrogen and Phosphorus on Phytoplankton Composition and Biomass in Subtropical, Urban Shallow Lakes in Wuhan, China. Limnological, 41, 48-56.
https://doi.org/10.1016/j.limno.2010.03.003