JAPC  >> Vol. 6 No. 2 (May 2017)

    NiFe-LDHs催化氧气析出反应的密度泛函理论研究
    Density Functional Theory Investigation of Oxygen Evolution Reaction on the NiFe-LDHs (100) Surface

  • 全文下载: PDF(1343KB) HTML   XML   PP.75-83   DOI: 10.12677/JAPC.2017.62010  
  • 下载量: 372  浏览量: 939  

作者:  

田 阳,毕永民,秦邦昌:北京化工大学,北京

关键词:
水滑石氧气析出反应密度泛函理论LDHs Oxygen Evolution Reaction Density Functional Theory

摘要:

本文采用第一性原理密度泛函理论研究了NiFe层状双氢氧化物析氧反应的机理,针对NiFe-LDHs (100)晶面暴露出来的不同金属作为催化反应的位点,计算了各基元反应的吉布斯自由能,推算出不同金属作为位点的过电位。Fe作为OER的催化位点过电位是0.703 eV,Ni作为OER的催化位点过电位是0.985 eV,通过比较过电位大小,发现0.703 eV更低一些,催化反应更容易实现。并且根据态密度图可以分析出Fe的电子传输能力更强。Fe原子作为OER催化位点的活性比Ni原子好。

In the work, First principles periodic Density functional theory (DFT) calculations were used to investigate the electrochemical oxygen evolution reaction (OER) on NiFe layered double hydrox-ide, NiFe-LDHs (100) surface were exposed different metals, Fe and Ni as the sites of catalytic re-action respectively. The Gibbs free energy of each elementary reaction was calculated and the overpotential of different metals was deduced. When Fe atoms as the OER catalytic sites, the overpotential is 0.703 eV, when Ni atoms as OER catalytic sites, the overpotential is 0.985 eV. By comparing the value of overpotential, catalytic reaction is easier to achieve when the overpoten-tial is 0.703 eV. According to the density of state, it can be concluded that the electron conductivity of Fe is stronger, so the effect of Fe atoms as the OER catalytic activity site is better than Ni atoms.

文章引用:
田阳, 毕永民, 秦邦昌, 李亚平. NiFe-LDHs催化氧气析出反应的密度泛函理论研究[J]. 物理化学进展, 2017, 6(2): 75-83. https://doi.org/10.12677/JAPC.2017.62010

参考文献

[1] Luo, J., Im, J.H., Mayer, M.T., Schreier, M., Nazeeruddin, M.K., Park, N.G., et al. (2014) Water Photolysis at 12.3% Efficiency via Perovskite Photovoltaics and Earth-Abundant Catalysts. Science, 345, 1593-1596.
https://doi.org/10.1126/science.1258307
[2] Jiao, Y., Zheng, Y., Jaroniec, M. and Qiao, S.Z. (2015) Design of Electrocatalysts for Oxygen- and Hydrogen-Involve- ing Energy Conversion Reactions. Chemical Society Reviews, 44, 2060-2086.
https://doi.org/10.1039/C4CS00470A
[3] Li, Y., Gong, M., Liang, Y., Feng, J., Kim, J.E., Wang, H., et al. (2013) Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts. Nature Communications, 4, 1805.
https://doi.org/10.1038/ncomms2812
[4] Chen, G., Bare, S.R. and Mallouk, T.E. (2002) Development of Supported Bifunctional Electrocatalysts for Unitized Regenerative Fuel Cells. Journal of the Electrochemical Society, 149, A1092-A1099.
https://doi.org/10.1149/1.1491237
[5] Thounthong, P., Sethakul, P., Raël, S. and Davat, B. (2009) Performance Evaluation of Fuel Cell/Battery/Supercapa- citor Hybrid Power Source for Vehicle Applications. Journal of Power Sources, 193, 376-385.
https://doi.org/10.1016/j.jpowsour.2008.12.120
[6] Lee, H.K., Shim, J.P., Shim, M.J., Kim, S.W. and Lee, J.S. (1996) Oxygen Reduction Behavior with Silver Alloy Catalyst in Alkaline Media. Materials Chemistry & Physics, 45, 238-242.
https://doi.org/10.1016/0254-0584(95)01738-0
[7] 韩益苹, 罗鹏, 蔡称心, 等. Pt和Ir催化剂在中性电解液中对NH3电氧化性能[J]. 应用化学, 2008, 25(3): 361-365.
[8] Endo, K., Katayama, Y. and Miura, T. (2004) Pt-Ir and Pt-Cu Binary Alloys as the Electrocatalyst for Ammonia Oxidation. Electrochimica Acta, 49, 1635-1638.
https://doi.org/10.1016/S0013-4686(03)00993-9
[9] Endo, K., Nakamura, K., Katayama, Y. and Miura, T. (2004) Pt-Me (Me = Ir, Ru, Ni) Binary Alloys as an Ammonia Oxidation Anode. Electrochimica Acta, 49, 2503-2509.
https://doi.org/10.1016/j.electacta.2004.01.025
[10] 牛凤娟, 易清风. 纳米钯催化剂对甲醇的电催化氧化[J]. 电化学, 2011(1): 67-72.
[11] 王丽艳, 王宝辉, 吴红军, 等. 阳极涂层的研究进展[J]. 化学工业与工程, 2009, 26(2): 176-182.
[12] Galizzioli, D., Tantardini, F. and Trasatti, S. (1974) Ruthenium Dioxide: A New Electrode Material. I. Behaviour in Acid Solutions of Inert Electrolytes. Journal of Applied Electrochemistry, 4, 57-67.
https://doi.org/10.1007/BF00615906
[13] Cheng, Y., Xu, C., Jia, L., Gale, J.D., Zhang, L., Liu, C., et al. (2015) Pristine Carbon Nanotubes as Non-Metal Electrocatalysts for Oxygen Evolution Reaction of Water Splitting. Applied Catalysis B Environmental, 163, 96-104.
https://doi.org/10.1016/j.apcatb.2014.07.049
[14] Tseung, A.C.C. and Bevan, H.L. (1973) A Reversible Oxygen Electrode. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 45, 429-438.
[15] Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L. and Gong, J.R. (2013) Graphene-Based Materials for Hydrogen Generation from Light-Driven Water Splitting. Advanced Materials, 25, 3820-3839.
[16] Corrigan, D.A. (1987) ChemInform Abstract: Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Cheminform, 18, 377-384.
https://doi.org/10.1002/chin.198722015
[17] Młynarek, G., Paszkiewicz, M. and Radniecka, A. (1984) The Effect of Ferric Ions on the Behaviour of a Nickelous Hydroxide Electrode. Journal of Applied Electrochemistry, 14, 145-149.
https://doi.org/10.1007/BF00618733
[18] Corrigan, D.A. and Bendert, R.M. (1989) ChemInform Abstract: Effect of Coprecipitated Metal Ions on the Electrochemistry of Nickel Hydroxide Thin Films: Cyclic Voltammetry in 1 M KOH. Cheminform, 20, 723-728.
https://doi.org/10.1002/chin.198928020
[19] Dong, Y., Zhang, P., Kou, Y., Yang, Z., Li, Y. and Sun, X. (2015) A First-Principles Study of Oxygen Formation over NiFe-Layered Double Hydroxides Surface. Catalysis Letters, 145, 1-8.
https://doi.org/10.1007/s10562-015-1561-0
[20] Rossmeisl, J., Logadottir, A. and Nørskov, J.K. (2005) EElectrolysis of Water on (Oxidized) Metal Surfaces. Chemical Physics, 319, 178-184.
https://doi.org/10.1016/j.chemphys.2005.05.038
[21] Liao, P., Keith, J.A. and Carter, E.A. (2012) Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis. Journal of the American Chemical Society, 134, 13296- 13309.
https://doi.org/10.1021/ja301567f
[22] Friebel, D., Louie, M.W., Bajdich, M., Sanwald, K.E., Cai, Y., Wise, A.M., et al. (2015) Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 137, 1305-1313.
https://doi.org/10.1021/ja511559d