基于可穿戴设备的微型磁耦合谐振无线充电系统的分析
Analysis of a Small Charging System for Wearable Devices Based on Magnetic Coupling Resonance
DOI: 10.12677/JEE.2017.52014, PDF, HTML, XML, 下载: 1,470  浏览: 3,454  国家自然科学基金支持
作者: 赵 军, 李 靖, 李乃良, 张 遥:河北工业大学电磁场与电器可靠性省部共建重点实验室,天津
关键词: 可穿戴设备磁耦合谐振无线充电谐振频率传输效率Wearable Devices Magnetic Coupling Resonance Wireless Charging Resonant Frequency Transmission Efficiency
摘要: 近几年,越来越多的可穿戴设备走进人们的生活。但对大多数可穿戴设备而言,电池续航时间短,充电困难已经成为用户普遍反映的问题,磁耦合谐振无线能量传输技术能够为可穿戴设备提供方便,安全的能量供应。由于可穿戴设备体积小,因此设计一种小尺寸的无线充电系统十分必要。本文通过对谐振线圈进行仿真分析,得到了影响线圈谐振频率的关键设计参数。在此基础上设计出了小小匹配的谐振系统和新型的大小匹配的谐振系统,并且系统中小谐振线圈的体积仅为0.675cm3,能够满足可穿戴设备的体积需求。对两谐振系统的传输效率进行实验分析,结果表明大小匹配的谐振系统具有更好的能量传输性能,在可穿戴设备领域具有良好的应用前景。
Abstract: As more and more wearable devices come into people’s lives, the short duration of the battery and charging difficulties of wearable devices need more focus. Magnetic coupling resonance wireless energy transmission technology can provide convenient and safe energy supply for wearable devices. Wearable devices are small in size, and it is necessary to design a small size wireless charging system. In this paper, the relationship between coil parameters and resonant frequency are modeled by simulation, and the key parameters are obtained. On the basis of simulation, two systems are designed, one consists of two same small size coils, the other consists of a big size coil and a small size coil, and the volume of the small size coil is only 0.675cm3, it can meet the requirements of wearable devices. In addition, the transmission efficiency of the two systems is analyzed, and the results show that this new system has high transmission performance and a good application prospect in the field of wearable devices.
文章引用:赵军, 李靖, 李乃良, 张遥. 基于可穿戴设备的微型磁耦合谐振无线充电系统的分析[J]. 电气工程, 2017, 5(2): 115-125. https://doi.org/10.12677/JEE.2017.52014

参考文献

[1] Patel, M.S., Asch, D.A. and Volpp, K.G. (2015) Wearable Devices as Facilitators Not Drivers of Health Behavior Change. JAMA, 313, 459-460.
https://doi.org/10.1001/jama.2014.14781
[2] Case, M.A., Burwick, H.A., Volpp, K.G., et al. (2015) Accuracy of Smartphone Applications and Wearable Devices for Tracking Physical Activity Data. JAMA, 313, 625-626.
https://doi.org/10.1001/jama.2014.17841
[3] Song, B.L. (2014) Current Status and Future Development Direction of Wearable Devices. Silicon Valley, 25, 9-10.
[4] Yu, N.X., Chen, D.Y. and Xiahou, S.J. (2012) The New Development of Wearable Computing Technology and Its Application. Digicom, 4, 13-20.
[5] Starner, T. (2001) The Challenges of Wearable Computing. IEEE Micro, 7, 44-52.
https://doi.org/10.1109/40.946681
[6] 赵军, 徐桂芝, 张超, 等. 一种适用于磁耦合谐振无线能量传输系统的新型小尺寸谐振器的仿真与实验[J]. 电工技术学报, 2014, 29(1): 208-214.
[7] Yang, X.S., Zhao, J., Xu, G.Z., et al. (2016) The Experimental Research on a Small Size Magnetic Coupling Resonance Wireless Energy Transmission System. Transactions of China Electro-Technical Society, 31, 13-17.
[8] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13.
[9] Yang, Q.X., Xu, G.Z. and Jin, J.Q. (2010) Optimal Design of Energy Transmission System for Implantable Device Base on WiTricity. Electromagnetic Field Computation (CEFC), 10-13.
[10] Zhao, J., Yang, X.S., Xu, G.Z., et al. (2013) Research on Electromagnetic Environment to Chest via Witricity. Transactions of China Eletrotechnical Society, 28, 200-203.
[11] 傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26.