PM  >> Vol. 7 No. 3 (May 2017)

    无穷级数变换的一种方法
    One Method of Transformation of Infinite Series

  • 全文下载: PDF(349KB) HTML   XML   PP.176-185   DOI: 10.12677/PM.2017.73023  
  • 下载量: 119  浏览量: 173  

作者:  

陈艳丽,张来萍,及万会:银川能源学院基础部,宁夏 银川

关键词:
变换核留数无穷级数伽马函数恒等式Transformation Kernels Residue Infinite Series Gamma Function Identity

摘要:

本文选取“变换核”函数,利用复变函数的留数定理给出一些形式各异的无穷级数恒等式。

By selecting the “transformation kernel” function, some infinite series identities are given by us-ing the residual theorem of the complex function.

文章引用:
陈艳丽, 张来萍, 及万会. 无穷级数变换的一种方法[J]. 理论数学, 2017, 7(3): 176-185. https://doi.org/10.12677/PM.2017.73023

参考文献

[1] Jolley, L.B.W. (1961) Summation of Series. 2nd Revised Edition, Dover Publications, Inc., New York, 156-159.
[2] Sofo, A. (2003) Computation Techniques for the Summation of Series. Kluwer Academic, Plenum Publishers, New York, 123.
https://doi.org/10.1007/978-1-4615-0057-5
[3] Lehmer, D.H. (1985) Interesting Series Involving the Central Binomial Coefficient. The American Mathematical Monthly, 92, 449-457.
https://doi.org/10.2307/2322496
[4] Trif, T. (2000) Combinatorial Sums and Series Involving Inverses of Binomial Coefficients. The Fibonacci Quarterly, 38, 79-84.
[5] Borwein, J.M. and Girgensohn, R. (2005) Evaluation of Binomial Series. Aequationes Mathematicae, 70, 25-36.
https://doi.org/10.1007/s00010-005-2774-x
[6] 及万会, 张来萍. 关于正负相间二项式系数倒数级数[J]. 理论数学, 2012, 2(4): 192-201.
[7] 及万会, 黑宝骊. 由裂项法导出二项式系数倒数级数[J]. 理论数学, 2013, 3(1): 18-30.
[8] 及万会, 张来萍, 杨春艳. 封闭形和式初步[M]. 第1版. 北京: 国家行政学院出版社, 2014: 204-264.
[9] Mansden, J.E. (1970) Basis Complex Analysis. W. H. Freeman and Company, San Francisco, 208, 209, 213.
[10] Berndt, B.C. (1989) Ramanujan’s Notebooks, Part II. Springer-Verlag, New York, 324.
https://doi.org/10.1007/978-1-4612-4530-8
[11] 盖云英, 包革军. 复变函数与积分变换[M]. 第2版. 北京: 科学出版社, 2007: 127-128.