APP  >> Vol. 7 No. 5 (May 2017)

    常用除草剂水溶液的光谱研究
    Spectroscopic Studies on the Aqueous Solution of Commonly Used Herbicides

  • 全文下载: PDF(2169KB) HTML   XML   PP.119-126   DOI: 10.12677/APP.2017.75017  
  • 下载量: 156  浏览量: 203   科研立项经费支持

作者:  

柳晓婷,陈丹萍,高天祎:黑龙江八一农垦大学信息技术学院,黑龙江 大庆;
王乐新:黑龙江八一农垦大学理学院,黑龙江 大庆

关键词:
百草枯吡嘧磺隆吸收光谱荧光光谱三维荧光光谱Paraquat Pyrazosulfuron-Ethyl Absorption Spectrum Fluorescence Spectra Three-Dimensional Fluorescence Spectra

摘要:

利用紫外–可见吸收光谱、荧光光谱和三维荧光光谱等技术研究了除草剂(百草枯、吡嘧磺隆)水溶液的光谱特性。结果表明,在相同的实验条件下,百草枯在257 nm处有特征吸收峰,吡嘧磺隆在228 nm处有特征吸收峰;百草枯和吡嘧磺隆水溶液的荧光光谱、三维荧光光谱具有显著的差异,百草枯的主要荧光区域分布在λex\λem = 290~350 nm\350~550 nm处,最佳激发波长为310 nm,峰值位置为431 nm,最大荧光强度为130.5;吡嘧磺隆荧光区域分布在λex\λem = 220~245 nm\320~380 nm和λex\λem = 250~330 nm\310~400 nm处有荧光,共有两处峰,峰值位置都为340 nm,激发波长分别在225 nm和285 nm处,最大荧光强度为793.6。本研究为除草剂残留的定性检测分析提供了实验参考。

To study the spectral characteristics of herbicide aqueous solution (paraquat, pyrazosulfuron ethyl), absorption spectra, fluorescence spectra and fluorescence spectra of three-dimensional technology are utilized. The result shows that the characteristic absorption peak of paraquat is at 257 nm and the characteristic absorption peak of pyrazosulfuron ethyl is at 228 nm under the same experimental conditions. Fluorescence spectroscopy and three-dimensional fluorescence spectrum of pyrazosulfuron ethyl is significantly different from those of paraquat aqueous solu-tion. Fluorescent areal distribution of paraquat is mainly in λex\λem = 290 - 350 nm\350 - 550 nm and the best excitation wavelength is at 310 nm, the peak position is at 431 nm, the maximum intensity of fluorescence is 130.5. There are two peaks of pyrazosulfuron ethyl regional distribution of fluorescence are in λex\λem = 220 - 245 nm\320 - 380 nm and λex\λem = 250 - 330 nm\310 - 400 nm fluorescence. Location of the both two peaks is at 340 nm and excitation wavelength of 285 nm and 225 nm respectively is at the maximum fluorescence intensity of 793.6. This study analyzed the qualitative detection of herbicides to provide a reference for the experiment.

文章引用:
柳晓婷, 陈丹萍, 高天祎, 王乐新. 常用除草剂水溶液的光谱研究[J]. 应用物理, 2017, 7(5): 119-126. https://doi.org/10.12677/APP.2017.75017

参考文献

[1] 程慕如, 孙致远. 三种磺酰脲类除草剂的光解和水解作用[J]. 植物保护学报, 2000, 27(1): 93-94.
[2] 杨曦, 王晓书, 朱春媚, 等. 磺酰脲类除草剂在环境中的光降解研究——水溶液中的光解动力学[J]. 环境科学, 1998(6): 30-33.
[3] 梁丝柳. 含磷除草剂的色谱分析研究[D]: [ 硕士学位论文]. 广州: 暨南大学, 2013.
[4] 俞志刚, 刘波, 姜兆华, 等. SPE/RRLC-MS法监测哈尔滨饮水源中三嗪类除草剂多残留量[J]. 化学试剂, 2009, 31(8): 614-618.
[5] 卜元卿, 孔源, 智勇, 等. 化学农药对环境的污染及其防控对策建议[J]. 中国农业科技导报, 2014, 16(2): 19-25.
[6] 黄宝美. 毛细管电泳法测定青菜中敌百虫的残留量[J]. 分析试验室, 2004, 23(3): 1-3.
[7] 颜志刚, 郑松, 谢强军, 等. 有机磷农药甲基对硫磷的太赫兹(THz)光谱研究[J]. 光谱学与光谱分析, 2009, 29(10): 2622-2625.
[8] 闫实. 气相色谱串联质谱测定蔬菜中农药多残留快速检测方法研究[J]. 安徽农业科学, 2013, 41(19): 8172-8174
[9] 王宇庆, 王索建. 红外与可见光融合图像的质量评价[J]. 中国光学, 2014, 7(3): 396-401.
[10] 侯冠宇, 王平, 佟存柱. 激光诱导击穿光谱技术及应用研究进展[J]. 中国光学, 2013, 6(4): 490-500.
[11] 许伟琳, 武春风, 逯力红, 等. 基于光谱角时序不变性的红外目标识别[J]. 中国光学, 2012, 5(3): 25.
[12] Zhang, G.W., Pan, J.H. and Ni, Y.N. (2006) Resolution of Synchronous Fluorimetric Spectrum for Carbaryl and Coumaphos and Its Application Study. Spectroscopy and Spectral Analysis, 26, 1092-1095.
[13] 陈超, 陈国庆, 高淑梅, 等. 几种有机磷农药的光谱特性研究[J]. 光谱学与光谱分析, 2012, 32(6): 1592-1595.