MOS  >> Vol. 6 No. 2 (May 2017)

    圆棒表面非共面双裂纹交互影响数值分析
    Numerical Study of the Interaction Behavior of Two Non-Coplanar Cracks in Round Bars

  • 全文下载: PDF(611KB) HTML   XML   PP.90-97   DOI: 10.12677/MOS.2017.62011  
  • 下载量: 561  浏览量: 1,071  

作者:  

买歌菲热提,李泽亚:中央民族大学理学院,北京

关键词:
数值模拟有限元重合网格法疲劳裂纹扩展双裂纹Numerical Simulation Superposition Fem Fatigue Crack Growth Two Cracks

摘要:

本文中,利用有限元重合网格法(s-version FEM, S-FEM)研究分析了圆棒表面两个非共面裂纹间的相互作用。有限元重合网格法是在有限元法的框架中,将整体网格与局部网格叠加的方法。该方法便于建立多个裂纹的有限元单元网格。利用虚拟裂纹闭合方法计算裂纹前端的应力强度因子。通过改变两个裂纹间的相对距离和裂纹尺寸等形状空间参数来分析其对应力强度因子的影响。此分析结果能对结构损伤评估具有一定的参考价值。

In the present study, the interaction of two non-coplanar cracks in round bars was investigated using the superposition finite element method (s-version FEM, S-FEM). The S-FEM, in the frame of finite element method, is a global-local overlaying method. The advantage of this method is saving the effort in FE modeling for multiple cracks. The virtual crack closure method is used to crack stress intensity factors. The interactions of two static cracks were analyzed by changing the relative distance between the cracks and the crack sizes. The analyses results may provide a reference for structure damage evaluation.

文章引用:
买歌菲热提, 李泽亚. 圆棒表面非共面双裂纹交互影响数值分析[J]. 建模与仿真, 2017, 6(2): 90-97. https://doi.org/10.12677/MOS.2017.62011

参考文献

[1] Kitagawa, H., Fujita, T. and Miyazawa, K. (1978) Small Randomly Distributed Cracks in Corrosion Fatigue. ASTM Internation-al.
[2] O’Day, M.P. and Curtin, W.A. (2004) A Superposition Framework for Discrete Dislocation Plasticity. Journal of Applied Mechanics, 71, 805-815.
https://doi.org/10.1115/1.1794167
[3] Iida, K., Ando, K. and Hirata, T. (1984) An Evaluation Technique for Fatigue Life of Multiple Surface Cracks. Naval Architecture and Ocean Engineering, 22, 177-199.
[4] Kamaya, M. (2003) A Crack Growth Evaluation Method for Interacting Multiple Cracks. JSME International Journal. Series A, Solid Mechanics and Material Engineering, 46, 15-23.
https://doi.org/10.1299/jsmea.46.15
[5] 谢伟, 张炯, 黄其青, 等. 有限大体复合型表面裂纹断裂特性研究[J]. 机械科学与技术, 2012, 31(3): 363-366.
[6] 买歌菲热提, 菊池正纪, 买买提明艾尼, 等. 基于有限元重合网格法的三维疲劳裂纹扩展模拟与验证[C]//北京力学会. 北京力学会第18届学术年会论文集, 2012.
[7] Fish, J. and Markolefas, S. (1993) Adaptive s-Method for Linear Elastostatics. Computer Methods in Applied Mechanics and Engineering, 104, 363-396.
https://doi.org/10.1016/0045-7825(93)90032-S
[8] Fish, J. and Guttal, R. (1996) The s-Version of Finite Element Method for Laminated Composites. International Journal for Numerical Methods in Engineering, 39, 3641-3662.
https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3641::AID-NME17>3.0.CO;2-P
[9] Krueger, R. (2004) Virtual Crack Closure Technique: History, Approach, and Applications. Applied Mechanics Reviews, 57, 109-143.
https://doi.org/10.1115/1.1595677
[10] Shiratori, M., Miyoshi, T. and Zhang, G.R. (1986) Analysis of Stress Intensity Factors for Surface Cracks Subjected to Arbitrarily Distributed Surface Stresses (3rd Report). Transactions of the Japan Society of Mechanical Engineers, 660-662. (In Japanese)
[11] Kamaya, M. (2008) Growth Evaluation of Multiple Interacting Surface Cracks. Part II: Growth Evaluation of Parallel Cracks. Engineering Fracture Mechanics, 75, 1350-1366.
https://doi.org/10.1016/j.engfracmech.2007.07.014