鸡缺硒心肌损伤代谢组学分析
Metabonomics Analysis of Myocardial Injury Induced by Selenium Deficiency in Chicken
DOI: 10.12677/OJNS.2017.52018, PDF, HTML, XML, 下载: 1,687  浏览: 6,056  科研立项经费支持
作者: 刘 伟:东北农业大学动物医学学院内科教研室,黑龙江 哈尔滨;哈尔滨医科大学附属第二医院心肌缺血教育部重点实验室,黑龙江 哈尔滨;姚海东, 赵文超, 徐世文*:东北农业大学动物医学学院内科教研室,黑龙江 哈尔滨;孙 萌:哈尔滨医科大学附属第二医院心肌缺血教育部重点实验室,黑龙江 哈尔滨
关键词: 鸡心肌细胞缺硒代谢组Chicken Myocardial Cell Selenium Deficiency Metabonomics
摘要: 目的:探讨缺硒致鸡心肌损伤的代谢组学变化。方法:选用1日龄雏鸡,采用低硒饲料喂养建立鸡缺硒心肌损伤模型;通过血浆代谢组学方法检测差异代谢物质。结果:发现正负离子状态下,缺硒组血浆均有显著差异代谢物质,共计16种。其中显著上调表达的有胆碱、磷脂酰甘油、和亮氨酸(P < 0.01)。结论:在缺硒组中观察到甘油、磷脂、亮氨酸、类固醇等生化物质的异常代谢。这些潜在的生物标志物与炎症、凋亡、和血小板聚集有关。可初步为深入理解鸡缺硒心肌损伤代谢机制提供新的信息。
Abstract: Research purposes: Study on the changes of myocardial injury induced by selenium deficiency in chicken. Methods: 1-day old chicks with low selenium feed were chosen to build the chicken selenium deficient myocardial injury model. Plasma metabonomics analysis was applied to detect the differential metabolites. Results: There were 16 differential metabolites in selenium deficient plasma in positive and negative ion state. Among them, the abundance of choline, phosphatidyl glycerol and leucine were up-regulated (P < 0.01). Conclusion: Abnormal metabolism of glycerol and phospholipids, leucine, steroids and other biochemical substances were found in selenium deficiency group. These potential biomarkers are associated with inflammation, apoptosis, and platelet aggregation. It can provide new information for understanding the metabolic mechanism of selenium deficiency in chicken.
文章引用:刘伟, 姚海东, 赵文超, 孙萌, 徐世文. 鸡缺硒心肌损伤代谢组学分析[J]. 自然科学, 2017, 5(2): 126-136. https://doi.org/10.12677/OJNS.2017.52018

参考文献

[1] Köhrl, J., Brigelius-Flohé, R., Böck, A., Gärtner, R., Meyer, O. and Flohé, L. (2000) Selenium in Biology: Facts and Medical Perspectives. Biological Chemistry, 381, 849-864.
https://doi.org/10.1515/bc.2000.107
[2] Brown, K.M. and Arthur, J.R. (2001) Selenium, Selenoproteins and Human Health: A Review. Public Health Nutrition, 4, 593-599.
https://doi.org/10.1079/PHN2001143
[3] Li, J.G., Zhou, J.C., Zhao, H., Lei, X.G., Xia, X.J., Gao, G. and Wang, K.N. (2011) Enhanced Water-Holding Capacity of Meat Was Associated with Increased Sepw1 Gene Expression in Pigs Fed Selenium-Enriched Yeast. Meat Science, 87, 95-100.
https://doi.org/10.1016/j.meatsci.2010.05.019
[4] Wang, X., Zhang, X., Ren, X.P., Chen, J., Liu, H., Yang, J., Medvedovic, M., Hu, Z. and Fan, G.C. (2010) MicroRNA-494 Targeting Both Proapoptotic and Antiapoptotic Proteins Protects against Ischemia/Reperfusion-Induced Cardiac Injury. Circulation, 122, 1308-1318.
https://doi.org/10.1161/CIRCULATIONAHA.110.964684
[5] Bruce, S.J., Jonsson, P., Antti, H., Cloarecc, O., Tryggb, J., Marklundd, S.L. and Moritza, T. (2008) Evaluation of a Protocol for Metabolic Profiling Studies on Human Blood Plasma by Combined Ultra-Performance Liquid Chromatography/Mass Spectrometry: From Extraction to Data Analysis. Analytical Biochemistry, 372, 237-249.
https://doi.org/10.1016/j.ab.2007.09.037
[6] Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry, 78, 779-787.
https://doi.org/10.1021/ac051437y
[7] Katajamaa, M. and Oresic, M. (2007) Data Processing for Mass Spectrometry-Based Metabolomics. Journal of Chromatography A, 1158, 318-328.
https://doi.org/10.1016/j.chroma.2007.04.021
[8] Katajamaa, M. and Oresic, M. (2005) Processing Methods for Differential Analysis of LC/MS Profile Data. BMC Bioinformatics, 6, 179.
https://doi.org/10.1186/1471-2105-6-179
[9] Castillo, S., Gopalacharyulu, P., Yetukuri, L. and Orešič, M. (2011) Algorithms and Tools for the Preprocessing of LC-MS Metabolomics Data. Chemometrics and Intelligent Laboratory Systems, 108, 23-32.
https://doi.org/10.1016/j.chemolab.2011.03.010
[10] Hendriks, M.M.W.B., Eeuwijk, F.A., Jellema, R.H., Westerhuis, J.A., Reijmers, T.H., Hoefsloot, H.C.J., Smilde, A.K. (2011) Data-Processing Strategies for Metabolomics Studies. TrAC Trends in Analytical Chemistry, 30, 1685-1698.
https://doi.org/10.1016/j.trac.2011.04.019
[11] Ralf Tautenhahn, C.B. and Neumann, S.E. (2007) Annotation of LC/ESI-MS Mass Signals. Springer, Berlin.
https://doi.org/10.1007/978-3-540-71233-6_29
[12] Kuhl, C. (2010) LC-MS Peak Annotation and Identification with CAMERA. 114.
[13] Smith, C.A. (2005) LC/MS Preprocessing and Analysis with XCMS. Memory, 1-13.
[14] Warrack, B.M., Hnatyshyn, S., Ott, K.H., Reily, M.D., Sanders, M., Zhang, H. and Drexler, D.M. (2009) Normalization Strategies for Metabonomic Analysis of Urine Samples. Journal of Chromatography B, 877, 547-552.
https://doi.org/10.1016/j.jchromb.2009.01.007
[15] Trygg, J., Holmes, E. and Lundstedt, T. (2007) Chemometrics in Metabonomics. Journal of Proteome Research, 6, 469-479.
https://doi.org/10.1021/pr060594q
[16] Boulesteix, A.L. and Strimmer, K. (2007) Partial Least Squares: A Versatile Tool for the Analysis of High-Dimen- sional Genomic Data. Briefings in Bioinformatics, 8, 32-44.
https://doi.org/10.1093/bib/bbl016
[17] Park, Y.H., Jeon, Y.H. and Kim, I.Y. (2012) Selenoprotein W Promotes Cell Cycle Recovery from G2 Arrest through the Activation of CDC25B. Biochimica et Biophysica Acta, 1823, 2217-2226.
https://doi.org/10.1016/j.bbamcr.2012.09.001
[18] Wu, A.H.B., Crosby, P. and Fagan, G. (2003) Ischemia-Modified Albumin, Free Fatty Acids, whole Blood Choline, B-Type Natriuretic Peptide, Glycogen Phosphorylase BB, and Cardiac Troponin. In: Wu, A.H.B., Ed., Cardiac Markers, 2nd Edition, Humana Press, Totowa, 259-277.
[19] Belikova, N.A., Vladimirov, Y.A., Osipov, A.N., Kapralov, A.A., Tyurin, V.A., Potapovich, M.V., Basova, L.V., Peterson, J., Kurnikov, I.V. and Kagan, V.E. (2006) Peroxidase Activity and Structural Transitions of Cytochrome C Bound to Cardiolipin-Containing Membranes. Biochemistry, 45, 4998-5009.
https://doi.org/10.1021/bi0525573
[20] Danne, O., Möckel, M., Lueders, C., Mügge, C., Zschunke, G.A., Lufft, H., Müller, C. and Frei, U. (2003) Prognostic Implications of Elevated Whole Blood Choline Levels in Acute Coronary Syndromes. American Journal of Cardiology, 91, 1060-1067.
https://doi.org/10.1016/S0002-9149(03)00149-8
[21] Pérez de Obanos, M.P., López-Zabalza, M.J., Arriazu, E., Modola, T., Prieto, J., Herraizc, M.T. and Iraburu, M.J. (2007) Reactive Oxygen Species (ROS) Mediate the Effects of Leucine on Translation Regulation and Type I Collagen Production in Hepatic Stellate Cells. Biochimica et Biophysica Acta, 1773, 1681-1688.
https://doi.org/10.1016/j.bbamcr.2007.07.005