运筹与模糊学  >> Vol. 7 No. 2 (May 2017)

煤层气藏压裂裂缝损伤演化混沌特性研究
Chaotic Characteristic Research of CBM Re-servoir Fracturing Network Evolution

DOI: 10.12677/ORF.2017.72007, PDF, HTML, XML, 下载: 773  浏览: 2,582  科研立项经费支持

作者: 王婷婷, 张会珍:东北石油大学,电气信息工程学院,黑龙江 大庆,中;袁伟伟:东北石油大学,石油工程学院,黑龙江 大庆;钱 坤:东北石油大学,石油工程学院,黑龙江 大庆;大庆油田有限责任公司第三采油厂,黑龙江 大庆

关键词: 煤岩压裂混沌特性关联维数Lyapunov指数CBM Fracture Chaotic Characteristics Correlation Dimension Lyapunov Index

摘要: 煤岩体压裂裂缝系统演化属复杂的非线性动力特征,由损伤引起的煤岩压裂微裂缝,在其分形演化过程中,裂缝系统尖端应力场和微裂缝数目等信息发生改变,需要确定岩石裂缝尖端应力场与微裂缝数目在整个压裂过程中的变化规律,即预测岩体裂缝扩展规模。本文从关联维数,Lyapunov指数等特征量方面揭示煤岩裂缝演化混沌特性的本质。研究裂缝网络演化过程的混沌特征,分析裂缝网络演化混沌特征随压裂过程的变化规律。
Abstract: This electronic fracture of coal-rock fracture system evolution is a complex nonlinear dynamic characteristic of the coal-rock damage caused by fracturing micro-fracture. In its fractal evolution process, the information such as the crack tip stress field and number of micro cracks changes, needs to determine the change rule of rock crack tip stress field and the number of micro cracks in the fracturing process, i.e., the prediction of rock mass fracture scale. The paper reveals the essence of chaotic characteristics of coal-rock cracks evolution from correlation dimension and Lyapunov index, study the chaos characteristics in the process of fracture network evolution and analyze the rule of chaotic characteristics of fracture network evolution changing with the fracturing process.

文章引用: 王婷婷, 张会珍, 袁伟伟, 钱坤. 煤层气藏压裂裂缝损伤演化混沌特性研究[J]. 运筹与模糊学, 2017, 7(2): 51-60. https://doi.org/10.12677/ORF.2017.72007

参考文献

[1] 邓广哲, 王世斌, 黄炳香. 煤岩水压裂缝扩展行为特性研究[J]. 岩石力学与工程学报, 2004, 23(20): 3489-3493.
[2] Kennel, M.B., Brown, R., Abarbanel, H.D., et al. (1992) Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction. Physical Review A., 45, 3403-4311.
https://doi.org/10.1103/PhysRevA.45.3403
[3] MacCluer, C.R. (1992) Chaos in Linear Distributed Systems. Journal of Dynamic Systems, Measurement, and Control, 114, 322-324.
https://doi.org/10.1115/1.2896532
[4] Protopopescu, V. and Azmy, Y.Y. (1992) Topological Chaos for a Class of Linear Models. Mathematical Models and Methods in Applied Sciences, 2, 79-90.
https://doi.org/10.1142/S0218202592000065
[5] Desch, W., Schappacher, W. and Webb, G.F. (1997) Hypercyclic and Chaotic Semigroups of Linear Operators. Ergodic Theory and Dynamical Systems, 17, 793-819.
https://doi.org/10.1017/S0143385797084976
[6] Devaney, R.L. (1989) An Introduction to Chaotic Dynamical Systems. 2nd Edition, Addision-Wesley Press, NY.
[7] 陈铿, 韩伯棠. 混沌时间序列分析中的相空间重构技术综述[J]. 计算机科学, 2005, 32(4): 67-70.
[8] Cao, L. (1997) Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series. Physical D: Nonlinear Phenomena, 110, 43-50.
[9] Kugiumtzis, D. (1996) State Space Reconstruction Parameters in the Analysis of Chaotic Time Series—The Role of the Time Window Length. Physical D: Nonlinear Phenomena, 95, 13-28.
[10] Kim, H.S., Eykholt, R., Salas, J.D., et al. (1990) Nonlinear Dynamics, Delay Time, and Embedding Windows. Physical D: Nonlinear Phenomena, 127, 48-60.
[11] Packard, N.H., Cratchfield, J.P., Farmer, J.D., et al. (1980) Geometry from a Time Series. Physical Review Letters, 45, 712-715.
https://doi.org/10.1103/PhysRevLett.45.712
[12] Taken, F. (1981) Detecting Strange Attractors in Turbulence. Dynamical Systems and Turbulence, Warwick 1980, 898, 361-381.
https://doi.org/10.1007/bfb0091924