BR  >> Vol. 6 No. 3 (May 2017)

    石竹科系统学研究新进展
    New Advances in Caryophyllaceae Systematics

  • 全文下载: PDF(1499KB) HTML   XML   PP.103-113   DOI: 10.12677/BR.2017.63015  
  • 下载量: 144  浏览量: 308   国家自然科学基金支持

作者:  

王淑敏,李静,张林静:山西师范大学生命科学学院,山西 临汾;
武生聃,王伟:中国科学院植物研究所,系统与进化植物学国家重点实验室,北京

关键词:
石竹科繁缕亚科石竹亚科指甲草亚科分子系统学Caryophyllaceae Alsinoideae Caryophylloideae Paronychioideae Molecular Phylogeny

摘要:
本文综述了近年来石竹科系统学研究的新进展。石竹科(Caryophyllaceae)约有86属,2200余种,全球广布,主要分布在北半球温带和暖温带地区,具有重要的观赏和药用价值。石竹科可追溯到晚白垩世,其多样化中心位于地中海和伊朗–突雷尼地区。传统上石竹科被分为3个亚科:繁缕亚科(Alsinoideae)、石竹亚科(Caryophylloideae)和指甲草亚科(Paronychioideae)。近来的分子系统学研究表明,从演化关系上分析石竹科传统分类并不合理,因为3亚科均不是单系类群。而最新提出的石竹科11族分类系统则得到较好支持,尽管尚不完善。这11个分支间的系统发育关系基本清楚,但大爪草族(Sperguleae)的单系支持率不高,而且一些大属的范围及单系性仍然存在争议。此外,大属里许多小属的准确位置仍然悬而未决。因此石竹科分类系统亟需进一步修订,其内部一些关键分类群需要重新划分。

New advances of Caryophyllaceae systematics in recent years are reviewed in this paper. Caryophyllaceae, about 2200 species distributed among 86 genera, have a global distribution but primarily of temperate and warm-temperate regions of the Northern Hemisphere as well as a key ornamental and medicinal value. Caryophyllaceae date back to the Late Cretaceous, and have a center of diversity in the Mediterranean and Irano-Turanean regions. The family is traditionally subdivided into three subfamilies: Alsinoideae, Caryophylloideae and Paronychioideae. Recent molecular phylogenetic researches suggested that the traditionally recognized classification system has not been evolutionarily reasonable, since none of the three subfamilies is monophyletic. Instead, the currently proposed classification systems for Caryophyllaceae with eleven tribes are better supported despite some imperfection. Although the phylogenetic relationships among the eleven clades are basically distinct, the monophyly of Sperguleae is not well supported. The boundaries and monophyly of the major genera are uncertain. In addition, the placement of the many small genera among the larger genera have hitherto been poorly resolved, so it will be important to further revise the classification systems and delimit its own crucial taxa again.

文章引用:
王淑敏, 李静, 武生聃, 王伟, 张林静. 石竹科系统学研究新进展[J]. 植物学研究, 2017, 6(3): 103-113. https://doi.org/10.12677/BR.2017.63015

参考文献

[1] Cuenoud, P., Savolainen, V., Chatrou, L.W., Powell, M., Grayer, R.J. and Chase, M.W. (2002) Molecular Phylogenetics of Caryophyllales Based on Nuclear 18S rDNA and Plastid rbcL, atpB, and matK DNA Sequences. American Journal of Botany, 89, 132-144.
https://doi.org/10.3732/ajb.89.1.132
[2] 鲁德全. 黄土高原石竹科植物[J]. 西北植物学报, 1994, 14(5): 121-127.
[3] Bittrich, V. (1993) The Families and Genera of Vascular Plants. In: Kubitzki, K., Rohwer, J. and Bittrich, V., Eds., Flowering Plants: Dicotyledons; Magnoliid, Hamamelid and Caryophyllid Families, Vol. 2, Springer, Berlin, 206-236.
[4] Dequan, L. and Morton, J. (2001) Flora of China. In: Wu, Z. and Raven, P.H., Eds., Caryophyllaceae through Lardizabalaceae, Vol. 6, Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 1-113.
[5] Nowicke, J.W. (1994) Caryophyllales: Evolution and Systematics. In: Behnke, H.D. and Mabry, J.T., Eds., Pollen Morphology and Exine Ultrastructure, Springer Verlag, Berlin, 168-221.
[6] Punt, W. and Hoen, P.P. (1995) Caryophyllaceae. Review of Palaeobotany and Palynology, 88, 82-272.
[7] Stover, L.E. and Partridge, A.D. (1973) Tertiary and Late Cretaceous Spores and Pollen from the Gippsland Basin, South-Eastern Australia. Proceedings of the Royal Society of Victoria, 85, 237-286.
[8] Raine, J.I. (1984) Outline of a Palynological Zonation of Cretaceous to Paleogene Terrestrial Sediments in West Coast Region, South Island, New Zealand. New Zealand Geological Survey Report, 109, 1-82.
[9] Chandler, E.M. (1961) Flora of the Lower Headon Beds of Hampshire and the Isle of Wight. Bulletin of the British Museum of Natural History: Geology, 5, 91-158.
[10] Fu, L.G. (1999) China Plant Red Data Book. Science Press, Beijing, 202.
[11] Morlon, H., Parsons, T.L. and Plotkin, J.B. (2011) Reconciling Molecular Phylogenies with the Fossil Record. Proceedings of the National Academy of Sciences, 108, 16327-16332.
https://doi.org/10.1073/pnas.1102543108
[12] Angiosperm Phylogeny Group (1998) An Ordinal Classification for the Families of Flowering Plants. Annals of the Missouri Botanical Garden, 85, 531-553.
https://doi.org/10.2307/2992015
[13] Angiosperm Phylogeny Group II (2003) An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG II. Botanical Journal of the Linnean Society, 141, 399-436.
https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x
[14] Angiosperm Phylogeny Group III (2009) An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121.
https://doi.org/10.1111/j.1095-8339.2009.00996.x
[15] Angiosperm Phylogeny Group IV (2016) An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
https://doi.org/10.1111/boj.12385
[16] Hillis, D.M., Huelsenbeck, J.P. and Cunningham, C.W. (1994) Application and Accuracy of Molecular Phylogenies. Science-AAAS-Weekly Paper Edition-Including Guide to Scientific Information, 264, 671-676.
https://doi.org/10.1126/science.8171318
[17] Chrtek, J. and Slavikova, Z. (1987) Leitbundelanordnung in den Kron blattern von ausgewahlten Arten der Familie Stellariaceae. Preslia, 60, 11-21.
[18] Hutchinson, J. (1974) The Families of Flowering Plants. Oxford University Press, Oxford.
[19] Fernandes, A. and Leitao, M.T. (1971) Contribution a la connaissance cytotaxonomique des Spermatophyta do Portugal. III. Caryophyllaceae. Boletim da Sociedade Broteriana, 45, 167-176.
[20] Smissen, R.D., Clement, J.C., Garnock-Jones, P.J. and Chambers, G.K. (2002) Subfamilial Relationships within Caryophyllaceae as Inferred from 5’ ndhF Sequences. American Journal of Botany, 89, 1336-1341.
https://doi.org/10.3732/ajb.89.8.1336
[21] Fior, S., Karis, P.O., Casazza, G., Minuto, L. and Sala, F. (2006) Molecular Phylogeny of the Caryophyllaceae (Caryophyllales) Inferred from Chloroplast matK and Nuclear rDNA ITS Sequences. American Journal of Botany, 93, 399-411.
https://doi.org/10.3732/ajb.93.3.399
[22] Harbaugh, D.T., Nepokroeff, M., Rabeler, R.K., McNeill, J., Zimmer, E.A. and Wagner, W.L. (2010) A New Lineage-Based Tribal Classification of the Family Caryophyllaceae. International Journal of Plant Sciences, 171, 185- 198.
https://doi.org/10.1086/648993
[23] Greenberg, A.K. and Donoghue, M.J. (2011) Molecular Systematics and Character Evolution in Caryophyllaceae. Taxon, 60, 1637-1652.
[24] Jackson, A.K. (1933) Two Plants New to the Flora of Cyprus. Kew Bull, 1933, 407-408.
https://doi.org/10.2307/4113434
[25] Candau, P. (1978) Palinologia de Caryophyllaceae del sur de Espana: 1. Subfamilia Paronychioideae. Lagascalia, 7, 143-158.
[26] Rabeler, R.K. and Hartman, R.L. (2005) Flora of North America: north of Mexico. Caryophyllaceae. Vol. 5: Flora of North America, Oxford University Press, New York and Oxford, 656.
[27] Smissen, R.D., Garnock-Jones, P.J. and Chambers, G.K. (2003) Phylogenetic Analysis of ITS Sequences Suggests a Pliocene Origin for the Bipolar Distribution of Scleranthus (Caryophyllaceae). Australian Systematic Botany, 16, 301-315.
https://doi.org/10.1071/SB01032
[28] Maguire, B. (1958) Two Dominican Stellarias. Brittonia, 10, 32-32.
https://doi.org/10.2307/2804691
[29] Wagner, W.L., Weller, S.G. and Sakai, A.K. (1995) Hawaiian Biogeography: Evolution on a Hot Spot Archipelago. In: Wagner, W.L. and Funk, V.A., Eds., Phylogeny and Biogeography in Schiedea and Alsinidendron (Caryophyllaceae), Smithsonian Institution Press, Washington DC, 221-258.
[30] Soltis, P.S., Soltis, D.E., Weller, S.G., Sakai, A.K. and Wagner, W.L. (1996) Molecular Phylogenetic Analysis of the Hawaiian Endemics Schiedea and Alsinodendron (Caryophyllaceae). Systematic Botany, 21, 365-379.
https://doi.org/10.2307/2419665
[31] Palmer, E.J. and Steyermark, J.A. (1950) Notes on Geocarpon Minimum Mackenzie. Bulletin of the Torrey Botanical Club, 77, 268-273.
https://doi.org/10.2307/2481898
[32] Zhengyi, W., Zhou, L. and Wagner, W. (2001) Flora of China. In: Arenaria, L. and Flora of China Editorial Committee, Eds., Caryophyllaceae through Lardizabalaceae, Vol. 6, Science Press & Missouri Botanical Garden Press, Beijing and St. Louis, 40-66.
[33] McNeill, J. (1962) Taxonomic Studies in the Alsinoideae. I. Generic and Infra-Generic Groups. Notes Royal Botanic Garden Edinburgh, 24, 79-155.
[34] Sadeghian, S. (2015) Molecular Phylogenetic Analysis of Arenaria (Caryophyllaceae: Tribe Arenarieae) and Its Allies Inferred from Nuclear DNA Internal Transcribed Spacer and Plastid DNA rps16 Sequences. Botanical Journal of the Linnean Society, 178, 648-669.
https://doi.org/10.1111/boj.12293
[35] Valente, L.M., Savolainen, V. and Vargas, P. (2010) Unparalleled Rates of Species Diversification in Europe. Proceedings of the Royal Society, 277, 1489-1496.
https://doi.org/10.1098/rspb.2009.2163
[36] Oxelman, B., Liden, M., Rabeler, R.K. and Popp, M. (2000) A Revised Generic Classification of the Tribe Sileneae (Caryophyllaceae). Nordic Journal of Botany, 20, 743-748.
https://doi.org/10.1111/j.1756-1051.2000.tb00760.x
[37] Liden, M., Popp, M. and Oxelman, B. (2001) A Revised Generic Classification of the Tribe Sileneae (Caryophyllaceae). Nordic Journal of Botany, 20, 513-518.
[38] Greuter, W. (1995) Studies in Greek Caryophylloideae: Agrostemma, Silene, and Vaccaria. Willdenowia, 25, 105-142.
https://doi.org/10.1111/j.1756-1051.2000.tb01595.x
[39] Gregory, J.J. and Michael, K.M. (2003) A Middle-Late Eocene inflorescence of Caryophyllaceae from Tasmania, Australia. American Journal of Botany, 90, 761-768.
https://doi.org/10.3732/ajb.90.5.761