温度、电场及梯度系数对BaTiO3双手性畴壁的影响
Effects of Temperature, Electric Field and Gradient Coefficient on the Bichiral Domain Walls of BaTiO3
DOI: 10.12677/MS.2017.73039, PDF, HTML, XML, 下载: 1,483  浏览: 2,038  国家自然科学基金支持
作者: 王 芳, 欧 云:湖南科技大学机械设备健康维护湖南省重点实验室,湖南 湘潭;刘兰英, 李 波:湘潭大学材料科学与工程学院,湖南 湘潭;刘龙飞:湖南科技大学材料科学与工程学院,湖南 湘潭;王 伟:中国三峡集团,四川 成都
关键词: 铁电材料双手性畴壁钛酸钡金兹堡-朗道-德希文理论Ferroelectric Materials Bichiral Domain Wall Barium Titanate Landau Ginsburg-Devonshire Theory
摘要: 钛酸钡(BaTiO3, BTO)铁电材料的畴壁结构在挠曲电作用下呈现双手性结构,非传统的双手性畴壁结构对铁电材料的性能有较大影响。本文以笛卡尔坐标系为参考系,采用金兹堡-朗道-德希文理论模拟了不同温度、电场以及梯度系数对正方相钛酸钡180˚双手性畴壁结构的影响。研究结果表明:当温度处于室温附近时,畴壁宽度会随着温度的升高而增加。施加正向电场会使铁电材料的极化曲线向上平移,增加正向极化值。施加负向电场,则增加负向极化值。当BTO无量纲梯度系数在0.6~2.1的范围内时,铁电畴壁的宽度会随着梯度系数的增大而增加。该结果将为双手性畴壁调控铁电材料性能提供可靠的依据。
Abstract: The domain wall structure of barium titanate (BaTiO3) ferroelectric materials displays the bichiral structure under the flexoelectric effect, and the unconventional bichiral domain wall has a signifi-cant effect on the properties of ferroelectric materials. In this study, the effects of temperature, electric field and gradient coefficient on the bichiral domain wall of the tetragonal phase BaTiO3 are predicted in the Descartes coordinate system using Landau Ginsburg-Devonshire (LGD) theory. The results show that the wall width increases with the increase of temperature when the temperature is close to the room temperature. The positive electric field makes the polarization curve of the ferroelectric material move up, and increases the forward polarization value. When the negative electric field is applied, the negative polarization value increases. The domain wall width increases with the increase of the gradient coefficient of BaTiO3 when the dimensionless gradient coefficient is in the range of 0.6 - 2.1. The simulation results will provide a way to tune the properties of ferroelectric materials with the bichiral domain wall.
文章引用:王芳, 刘兰英, 李波, 刘龙飞, 欧云, 王伟. 温度、电场及梯度系数对BaTiO3双手性畴壁的影响[J]. 材料科学, 2017, 7(3): 283-294. https://doi.org/10.12677/MS.2017.73039

参考文献

[1] Fabrega, L., Marti, X., Sanchez, F. and Fontcuberta, J. (2011) Chiral Domains in Cycloidal Multiferroic Thin Films: Switching and Memory Effects. Physical Review Letters, 107, Article ID: 257601.
[2] Ishibashi, Y. and IwataI, M. (2007) Domains and Domain Walls in Ferroelectric Bi4Ti3O12: A System with Biquadratic Order Parameter Coupling. JJAP, 46, 272-275.
https://doi.org/10.1143/jjap.46.272
[3] Goncalves-Ferreira, L., Redfern, S.A.T., Artacho, E. and Salje, E.K.H. (2008) Ferrielectric Twin Walls in CaTiO3. Physical Review Letters, 101, Article ID: 097602.
https://doi.org/10.1103/PhysRevLett.101.097602
[4] Tagantsev, A.K., Courtens, E. and Arzel, L. (2001) Predic-tion of a Low-Temperature Ferroelectric Instability in Antiphase Domain Boundaries of Strontium Titanate. Physical Review B, 64, Article ID: 224107.
https://doi.org/10.1103/PhysRevB.64.224107
[5] Sluka, T., Tagantsev, A., Bednyakov, P. and Setter, N. (2013) Free-Electron Gas at Charged Domain Walls in Insulating BaTiO3. Nature Communications, 4, 1808.
https://doi.org/10.1038/ncomms2839
[6] Stepkova, V., Marton, P. and Hlinka, J. (2012) Stress-Induced Phase Transition in Ferroelectric Domain Walls of BaTiO3. Journal of Physics: Condensed Matter, 24, Article ID: 212201.
https://doi.org/10.1088/0953-8984/24/21/212201
[7] Scrymgeour, D.A., Gopalan, V., Itagi, A., Saxena, A. and Swart, P.J. (2005) Phenomenological Theory of a Single Domain Wall in Uniaxial Trigonal Ferroelectrics: Lithium Niobate and Lithium Tantalate. Physical Review B, 71, Article ID: 184110.
https://doi.org/10.1103/PhysRevB.71.184110
[8] Lee, D., Behera, R.K., Wu, P., Xu, H., Li, Y.L., Sinnott, S.B., Phillpot, S.R., Chen, L.Q. and Gopalan, V. (2009) Mixed Bloch-Néel-Ising Character of 180˚ Ferroelectric Domain Walls. Physical Review B, 80, Article ID: 060102.
https://doi.org/10.1103/PhysRevB.80.149904
[9] Houchmandzadeh, B., Lajzerowicz, J. and Salje, E. (1991) Order Parameter Coupling and Chirality of Domain Walls. Journal of Physics: Condensed Matter, 3, 5163.
https://doi.org/10.1088/0953-8984/3/27/009
[10] Yudin, P.V., Tagantsev, A.K., Eliseev, E.A., Morozovska, A.N. and Setter, N. (2012) Bichiral Structure of Ferroelectric Domain Walls Driven by Flexoelectricity. Physical Review B, 86, Article ID: 134102.
https://doi.org/10.1103/physrevb.86.134102
[11] Eliseev, E.A., Yudin, P.V., Kalinin, S.V., Setter, N., Tagantsev, A.K. and Morozovska, A.N. (2013) Structural Phase Transitions and Electronic Phenomena at 180-Degree Domain Walls in Rhombohedral BaTiO3. Physical Review B, 87, Article ID: 054111.
https://doi.org/10.1103/physrevb.87.054111
[12] Hong, L., Soh, A.K., Liu, S.Y. and Lu, L. (2009) Vortex Struc-ture Transformation of BaTiO3 Nanoparticles through the Gradient Function. Journal of Applied Physics, 106, Article ID: 024111.
https://doi.org/10.1063/1.3186038
[13] Bell, A.J. (2001) Phenomenologically Derived Electric Field-Temperature Phase Diagrams and Piezoelectric Coefficients for Single Crystal Barium Titanate under Fields along Different Axes. Journal of Applied Physics, 89, 3907.
https://doi.org/10.1063/1.1352682
[14] Marton, P., Rychetsky, I. and Hlinka, J. (2010) Domain Walls of Ferroe-lectric BaTiO3 within the Ginzburg-Landau- Devonshire Phenomenological Model. Physical Review B, 81, Article ID: 144125.
https://doi.org/10.1103/PhysRevB.81.144125
[15] Pertsev, N.A., Zembilgotov, A.G. and Tagantsev, A.K. (1998) Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films. Physical Review Letters, 80, 1988.
https://doi.org/10.1103/PhysRevLett.80.1988
[16] Ponomareva, I., Tagantsev, A.K. and Bellaiche, L. (2012) Fi-nite-Temperature Flexoelectricity in Ferroelectric Thin Films from First Principles. Physical Review B, 85, Article ID: 104101.
https://doi.org/10.1103/physrevb.85.104101