PM  >> Vol. 7 No. 3 (May 2017)

    一类高阶线性泛函方程的振动准则
    Oscillate Criteria of a Class of Higher Order Linear Functional Equations

  • 全文下载: PDF(346KB) HTML   XML   PP.200-211   DOI: 10.12677/PM.2017.73026  
  • 下载量: 200  浏览量: 276   国家自然科学基金支持

作者:  

戴丽娜,伍思敏,林全文,苏新晓:广东石油化工学院理学院,广东 茂名

关键词:
振动高阶线性泛函方程Oscillation High Order Linear Functional Equations

摘要:

本论文主要是研究一类高阶线性泛函方程: 的振动性,这里 是已知的实值函数,并且 ,并得到该方程所有解振动的一些新的充分条件。我们的结果推广了现有文献中的某些结果。

This paper mainly studies oscillatory of a class of higher order linear functional equations of the form , where are given real valued functions and . Some sufficient conditions for the oscillation of all solutions of this equation are obtained. And our results generalize and improve some results in some literature given.

文章引用:
戴丽娜, 伍思敏, 林全文, 苏新晓. 一类高阶线性泛函方程的振动准则[J]. 理论数学, 2017, 7(3): 200-211. https://doi.org/10.12677/PM.2017.73026

参考文献

[1] Golda, W. and Werbowski, J. (1994) Oscillation of Linear Functional Equations of the Second Order. Funkcialaj Ekvacioj, 37, 221-227.
[2] Nowakowska, W. and Werbowski, J. (1995) Oscillation of Linear Functional Equations of Higherorder. Archiv der Mathematik, 31, 251-258.
[3] 周勇, 俞元洪. 变系数函数方程解的振动性[J]. 系统科学与数学, 1999, 19(3): 348-352.
[4] Shen, J. (2002) An Oscillation Criteria for Second Order Functional Equations. Acta Mathematica Scientia, 22, 56-62.
[5] 周勇, 刘正荣, 俞元洪. 变系数函数方程解的振动性准则[J]. 应用数学学报, 2000, 23(3): 413-419.
[6] 张孝理, 罗治国. 高阶线性泛函方程的振动性[J]. 应用数学学报, 2003, 26(1): 186-189.
[7] Lin, Q.-W., Wu, Y.-Z. and Liao, S.-Q. (2007) Oscillate Criteria of Nonlinear Functional Equations with Variable Coefficient. Journal of Maoming University, 17, 64-66.
[8] 林全文, 全焕, 吴英柱, 廖思泉. 高阶变系数函数方程的振动性[J]. 数学的实践与认识, 2009, 39(12): 244-249.
[9] Lin, Q.-W., Wu, Y.-Z. and Liao, S.-Q. (2009) A New Result of Oscillate Criteria of Functional Equations. Journal of Maoming University, 19, 58-60.
[10] 戴丽娜, 吴英柱, 林全文. 高阶变系数泛函方程解的振动性[J]. 数学的实践与认识, 2014, 44(10): 271-275.
[11] Lin, Q.-W., Wu, Y.-Z. and Liao, S.-Q. (2009) The Oscillation of Nonlinear Functional Equations with Variable Coefficients. Journal of Mathematics Research, 1, 216-221.
[12] Lin, Q., Chen, R. and Dai, L. (2011) Oscillatory Behavior of Solutions to Higher Order Linear Functional Equations. Journal of Biomathematics, 26, 9-16.
[13] 吴英柱, 林全文. 高阶变系数函数方程的非振动解[J]. 纯粹数学与应用数学, 2015(6): 575-580.
[14] 伍思敏, 戴丽娜, 林全文. 高阶泛函方程解的非振动准则[J]. 数学的实践与认识, 2013, 43(20): 280-285.
[15] 吴英柱. 高阶变系数函数方程解的振动准则[J]. 华南师范大学学报(自然科学版), 2016, 48(2): 107-110.