APP  >> Vol. 7 No. 5 (May 2017)

    Preparation and Anti-Sintering Property Study of Nano-La2Ce2O7 Powder

  • 全文下载: PDF(3648KB) HTML   XML   PP.140-148   DOI: 10.12677/APP.2017.75020  
  • 下载量: 824  浏览量: 2,281  


徐子慧,车军伟,梁工英:西安交通大学理学院,陕西 西安

溶胶-凝胶法纳米结构抗烧结性Sol-Gel Method Nano-Structure Anti-Sintering Property


通过溶胶–凝胶法合成纳米La2Ce2O7粉末,对得到的纳米粉末通过XRD、SEM和TEM进行结构表征、形貌分析以及性能研究。结果表明此种方法在较低温度下(700℃)即可得到晶型稳定的萤石结构的纳米La2Ce2O7粉末,煅烧温度升高到1000℃仍为纳米结构,晶粒大小在30 nm左右;纳米La2Ce2O7的晶粒团聚在一起,且粒径分布均匀;算得的晶体生长活化能为27.85 KJ∙mol−1;La2Ce2O7陶瓷片在1400℃下保温6 h后相对密度为90%,具有良好的抗烧结性能。

The nano-sized La2Ce2O7 powders were synthesized by sol-gel method. The structure, morphology and properties of the nano-powders were analysed by XRD, SEM and TEM. The results show that this method can obtain nano-La2Ce2O7 powder with stable fluorite crystal structure at lower temperature (700˚C). The calcination temperature is increased to 1000˚C, and the grain size is about 30 nm. The grains of nano-La2Ce2O7 are agglomerated together and the particle size distribution is uniform. The calculated activation energy of the crystal is 27.85 KJ∙mol−1. The La2Ce2O7 ceramic disk has a good anti-sintering performance after incubation at 1400˚C for 6 hours.

徐子慧, 刘向阳, 车军伟, 梁工英. 纳米La2Ce2O7粉末的制备及其抗烧结性能的研究[J]. 应用物理, 2017, 7(5): 140-148.


[1] Padture, N.P., Gell, M. and Jordan, E.H. (2002) Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science, 296, 280-284.
[2] Beele, W., Marijnissen, G. and Lieshout, A.V. (1999) The Evolution of Thermal Barrier Coatings—Status and Upcoming Solutions for Today’s Key Issues. Surface & Coatings Technology, 120, 61-67.
[3] 刘纯波, 林锋, 蒋显亮. 热障涂层的研究现状与发展趋势[J]. 中国有色金属学报, 2007, 17(1): 1-13.
[4] Cao, X.Q., Vassen, R. and Stoever, D. (2004) Ceramic Materials for Thermal Barrier Coatings. Journal of the European Ceramic Society, 24, 1-10.
[5] Miller, R.A. (1997) Thermal Barrier Coatings for Aircraft Engines: History and Directions. Journal of Thermal Spray Technology, 6, 35-42.
[6] 田永生, 陈传忠, 刘军红, 等. ZrO2热障涂层研究进展[J]. 中国机械工程, 2005, 16(16): 1499-1503.
[7] Wright, I.G. and Gibbons, T.B. (2007) Recent Developments in Gas Turbine Materials and Technology and Their Implications for Syngas Firing. International Journal of Hydrogen Energy, 32, 3610-3621.
[8] Tuller, H.L. and Nowick, A.S. (1975) Doped Ceria as a Solid Oxide Electrolyte. Journal of the Electrochemical Society, 122, 255-259.
[9] Lecomtebeckers, J. and Schubert, F. (1998) Materials for Advanced Power Engineering 1998: Proceedings of the 6th Liège Conference. Schriften des Forschungszentrum, Julich.
[10] 毛亚南, 弓爱君, 邱丽娜, 等. 高温固相法制备Sm2O3掺杂La2Ce2O7热障涂层材料[J]. 工程科学学报, 2015(1): 86-90.
[11] Liang, B. and Ding, C. (2005) Thermal Shock Resistances of Nanostructured and Conventional Zirconia Coatings Deposited by Atmospheric Plasma Spraying. Surface & Coatings Technology, 197, 185-192.
[12] Wang, C., Huang, W., Yue, W., et al. (2012) Synthesis of Monodispersed La2Ce2O7, Nanocrystals via Hydrothermal Method: A Study of Crystal Growth and Sintering Behavior. International Journal of Refractory Metals & Hard Materials, 31, 242-246.
[13] Tinwala, H. (2013) Effect of Temperature on Crystallite Size of Lanthanum Cerium Oxide (La2Ce2O7) and Its Optical Properties. Carbon-Science and Technology, 5, 225-230.
[14] 赵晓东, 曾克里, 谢建刚, 等. 溶胶-凝胶法在合成纳米La2Zr2O7中的应用[J]. 有色金属(冶炼部分), 2007(s1).
[15] Otaki, H., Kido, H., Hoshikawa, T., et al. (1988) Crystal Structure and Fluorescence Properties of R2Zr2O7 and (REux)2Zr2O7 Compounds. Journal of the Ceramic Society of Japan, 96, 124-126.
[16] Cao, X., Vassen, R., Fischer, W., et al. (2003) Lanthanum-Cerium Oxide as a Thermal Barrier-Coating Material for High-Temperature Applications. ChemInform, 34, 11-24.
[17] Kuo, C.W., Shen, Y.H., Hung, I.M., et al. (2009) Effect of Y2O3 Addition on the Crystal Growth and Sintering Behavior of YSZ Nanopowders Prepared by a Sol-Gel Process. Cheminform, 40, 186-193.