Tau的异常磷酸化与Tau病
Abnormally Phosphorylated Tau and Tauopathies
DOI: 10.12677/IJPN.2017.62002, PDF, HTML, XML, 下载: 2,073  浏览: 5,293 
作者: 陈亦刚:武汉科技大学医学院,湖北 武汉
关键词: 蛋白质Tau异常磷酸化Tau病功能障碍Protein Tau Abnormal Phosphorylation Tauopathy Dysfunction
摘要: Tau蛋白是脑内非常重要的微管相关蛋白。其异常磷酸化在神经退行性疾病中起重要的作用。Tau病是一种tau蛋白异常疾病的总称,即神经细胞内、神经胶质细胞内异常磷酸化tau蛋白蓄积的神经变性疾病。在tau蛋白某些区域的过度磷酸化可影响tau与微管的结合能力,更为严重的是,tau蛋白的过度磷酸化可促进和增强tau蛋白的聚集。许多证据表明,在阿尔茨海默病(AD)及其他tau蛋白引起的病理过程中tau蛋白的过度磷酸化可能发生在最早期。Tau蛋白发生过度磷酸化可能是蛋白激酶活性上调或磷酸酯酶活性下调造成。AD等神经退行性疾病的发生机制尚不明确。对tau蛋白的相关功能及调控机制进行深入的研究可能为了解神经退行性疾病的临床和病理生理机制提供某些新的思路,为此类疾病的早期诊断和治疗提供一定的依据。
Abstract: Tau is the very important microtuble-associated protein in the brain. Abnormally phosphorylated tau plays an important effect. Tauopathy is a total name of the diseases aroused by abnormal tau protein, being the neurodenatured diseases with the accumulation of abnormally phosphorylated tau in the neural cells and neuroglias. The hyper-phosphorylation at some regions of tau may affect the binding ability of tau with the microtuble, and being severer, the hyper-phosphorylation can improve and enhance the accumulation of tau. There are many evidences, that manifested the hyper-phosphorylation of tau protein may happen in the most early stage in the pathological courses of Alzheimer’s disease and the other diseases caused by the abnormal tau protein. Hyper-phosphorylation of tau protein can be caused by the up-regulation of the activity in the protein kinases or the down-regulation of the activity in the protein phosphatases. It is still not clear how do happen the neurodegenerative diseases such as AD and so on. The deep researches about the relative function and regulation-control mechanism of tau protein maybe provide some new thinking for us understanding the clinic and pathophysiological mechanism, and offer certain bases for the diagnosis and treatment in the early stage of the diseases.
文章引用:陈亦刚. Tau的异常磷酸化与Tau病[J]. 国际神经精神科学杂志, 2017, 6(2): 7-12. https://doi.org/10.12677/IJPN.2017.62002

参考文献

[1] Kosik, K.S. (1993) The Molecular and Cellular Biology of Tau. Brain Pathology, 3, 39-43.
https://doi.org/10.1111/j.1750-3639.1993.tb00724.x
[2] Marx, J. (2007) A New Take on Tau. Science, 316, 1416-1417.
https://doi.org/10.1126/science.316.5830.1416
[3] Andorfer, C., Kress, Y., Espinoza, M., et al. (2003) Hyperphosphorylation and Aggregation of Tau in Mice Expressing Normal Human Tau Isoforms. Journal of Neurochemistry, 86, 582-590.
https://doi.org/10.1046/j.1471-4159.2003.01879.x
[4] 吴琪. Alzheimer病神经元纤维缠结tau蛋白研究[J]. 中国神经精神疾病杂志, 2000, 26(1): 63-64.
[5] 马云峰, 王湘庆, 郎森阳. 微管相关蛋白tau蛋白及tau病的研究进展[J]. 解放军医学院学报, 2015, 36(6): 621- 624.
[6] Amniai, L., Barbier, P., Sillen, A., et al. (2009) Alzheimer Disease Specific Phosphoepitopes of Tau Interfere with Assembly of Tubulin but Not Binding to Microtubules. The FASEB Journal, 23, 1146-1152.
https://doi.org/10.1096/fj.08-121590
[7] Avila, J. (2008) Tau Kinases and Phosphatases. Journal of Cellular and Molecular Medicine, 12, 258-259.
https://doi.org/10.1111/j.1582-4934.2007.00214.x
[8] Hanger, D.P., Anderton, B.H. and Noble, W. (2009) Tau Phosphorylation: The Therapeutic Challenge for Neurodegenerative Disease. Trends in Molecular Medicine, 15, 112-119.
https://doi.org/10.1016/j.molmed.2009.01.003
[9] Liu, F., Li, B., Tung, E.J., et al. (2007) Site-Specific Effects of Tau Phosphorylation on Its Microtubule Assembly Activity and Self-Aggregation. European Journal of Neuroscience, 26, 3429-3436.
https://doi.org/10.1111/j.1460-9568.2007.05955.x
[10] Rankin, C.A., Sun, Q. and Gamblin, T.C. (2005) Pseu-do-Phosphorylation of Tau at Ser202 and Thr205 Affects Tau Filament Formation. Molecular Brain Research, 138, 84-93.
[11] Mondragón-Rodríguez, S., Basurto-Islas, G., Santa-Maria, I., et al. (2008) Cleavage and Conformational Changes of Tau Protein Follow Phosphorylation during Alzheimer’s Disease. International Journal of Experimental Pathology, 89, 81-90.
https://doi.org/10.1111/j.1365-2613.2007.00568.x
[12] Mondragón-Rodríguez, S., Basurto-Islas, G., Lee, H., et al. (2010) Causes versus Effects: The Increasing Complexities of Alzheimer’s Disease Pathogenesis. Expert Review of Neurotherapeutics, 10, 683-691.
https://doi.org/10.1586/ern.10.27
[13] Mondragón-Rodríguez, S., Mena, R., Binder, L.I., et al. (2008) Conformational Changes and Cleavage of Tau in Pick Bodies Parallel the Early Processing of Tau Found in Alzheimer Pathology. Neuropathology and Applied Neurobiology, 34, 62-75.
[14] Medeiros, R., Baglietto-Vargas, D. and Laferla, F.M. (2011) The Role of Tau in Alzheimer’s Disease and Disorders. CNS Neuroscience & Therapeutics, 17, 514-524.
https://doi.org/10.1111/j.1755-5949.2010.00177.x
[15] Diniz, B.S., Pinto-Janior, J.A. and Forlenza, O.V. (2008) Do CSF Total Tau, Phosphorylated Tau and β-Amyloid 42 Help to Predict Progression of Mild Cognitive Impairment to Alzheimer’s Disease? A Systematic Review and Meta- Analysis of the Literature. The World Journal of Biological Psychiatry, 9, 172-182.
https://doi.org/10.1080/15622970701535502
[16] Ewers, M., Buerger, K., Teipel, S.J., et al. (2007) Multicenter Assessment of CSF-Phosphorylated Tau for the Prediction of Conversion of MCI. Neurology, 69, 2205-2212.
https://doi.org/10.1212/01.wnl.0000286944.22262.ff
[17] Gong, C.X., Liu, F., Grundke-Iqbal, I., et al. (2006) Dysregulation of Protein Phosphorylation/Dephosphorylation in Alzheimer’s Disease: A Therapeutic Target. BioMed Research International, No. 3, Article ID: 31825.
[18] Hemandez, P., Lee, G., Sjoberg, M., et al. (2009) Tau Phosphorylation by cdk5 and Fyn in Response to Amyloid Peptide Aβ25-35: Involvement of Lipid Rafts. Journal of Alzheimer’s Disease, 16, 149-156.
https://doi.org/10.3233/JAD-2009-0933
[19] Cuehillo-Ibanez, I., Seereeram, A., Byers, H.L., et al. (2008) Phosphorylation of Tau Regulates Its Axonal Transport by Controlling Its Binding to Kinesin. The FASEB Journal, 22, 3186-3195.
https://doi.org/10.1096/fj.08-109181
[20] Lee, S., Hall, G.F., Shea, T.B., et al. (2011) Potentiation of Tau Aggregation by cdk5 and GSK3β. Journal of Alzheimer’s Disease, 26, 355-364.
[21] Wang, H., Zhao, H., Ye, Y., et al. (2010) Focal Cerebral Ischemia Induces Alzheimer’s Disease-Like Pathological Change in Rats. Journal of Huazhong University of Science and Technology (Medical Sciences), 30, 29-36.
https://doi.org/10.1007/s11596-010-0106-4
[22] Park, H., Kam, T.I., Kim, Y., et al. (2012) Neuropathogenic Role of Adenylate Kinase-1 in Aβ-Mediated Tau Phosphorylation via AMPK and GSK3β. Human Molecular Genetics, 21, 2725-2737.
https://doi.org/10.1093/hmg/dds100
[23] Jicha, G.A., Weaver, C., Lane, E., et al. (1999) cAMP-Dependent Protein Kinase Phosphorylations on Tau in Alzheimer’s Disease. The Journal of Neuroscience, 19, 7486-7494.
[24] Liu, F., Iqbal, K., Grundke-Iqbal, I., et al. (2004) O-GlcNAcylation Regulates Phosphorylation of Tau: A Mechanism Involved in Alzheimer’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 10804-10809.
https://doi.org/10.1073/pnas.0400348101
[25] Lefebvre, T., Ferreira, S., Dupont-Wallois, L., et al. (2003) Evidence of a Balance between Phosphorylation and O-GlcNAc Glycosylation of Tau Proteins—A Role in Nuclear Localization. Biochimica et Biophysica Acta, 1619, 167-176.
[26] Tian, Q. and Wang, J.Z. (2002) Role of Protein Phosphatases on Alzheimer Disease. Neurosignals, 11, 262-269.
https://doi.org/10.1159/000067425
[27] Zhang, C.E., Tian, Q., Wei, W., et al. (2008) Homoeysteine Induces Tau Phosphorylation by Inactivating Protein Phosphatase 2A in Rat Hippocampus. Neurobiology of Aging, 29, 1654-1665.
https://doi.org/10.1016/j.neurobiolaging.2007.04.015
[28] Liu, R. and Wang, J.Z. (2009) Protein Phosphatase 2A in Alzheimer’s Disease. Pathophysiology, 16, 273-277.
https://doi.org/10.1016/j.pathophys.2009.02.008
[29] Bennecib, M., Gong, C.X., Grundke-Iqbal, I., et al. (2001) Inhibition of PP-2A Up-Regulates CaMII in Rat Forebrain and Induces Hyperphosphorylation of Tau at Ser262/356. FEBS Letters, 490, 15-22.
https://doi.org/10.1016/S0014-5793(01)02127-5
[30] Li, L., Sengupta, A., Haque, N., et al. (2004) Memantine Inhibits and Reverses the Alzheimer Type Abnormal Hyperphosphorylation of Tau and Associated Neurodegeneration. FEBS Letters, 566, 261-269.
https://doi.org/10.1016/j.febslet.2004.04.047
[31] Iqbal, K. and Grundke-Iqbal, I. (2005) Pharmacological Approaches of Neurofibrillary Degeneration. Current Alzheimer Research, 2, 335-341.
https://doi.org/10.2174/1567205054367810
[32] Mondragón-Rodríguez, S., Trillaud-Doppia, E., Dudilot, A., et al. (2012) Interaction of Endogenous Tau Protein with Synaptic Proteins Is Regulated by N-Methyl-D-Aspartate Receptor-Dependent Tau Phosphorylation. Journal of Biological Chemistry, 287, 32040-32053.
https://doi.org/10.1074/jbc.M112.401240
[33] Xu, S.H., Brunden, K.R., Trojanowski, J.Q., et al. (2010) Characterization of Tau Fibrillization in Vitro. Alzheimer’s & Dementia, 6, 110-117.
https://doi.org/10.1016/j.jalz.2009.06.002
[34] Martina, L., Latypovaa, X. and Terroa, F. (2011) Post-Translational Modifications of Tau Protein: Implication for Alzheimer’s Disease. Neurochemistry International, 58, 458-471.
[35] Spires-Jones, T.L., Kopeikina, K.J., Koffie, R.M., et al. (2011) Are Tangles as Toxic as They Look? Journal of Molecular Neuroscience, 45, 438-444.
https://doi.org/10.1007/s12031-011-9566-7