沙田柚钙调素结合蛋白(CaMBP)基因的鉴定与序列分析
Identification and Sequence Analysis of a Calmodulin-Binding Protein Gene from Citrus Grandis var. Shatinyu Hort
DOI: 10.12677/OJNS.2017.52027, PDF, HTML, XML, 下载: 1,813  浏览: 4,175  国家自然科学基金支持
作者: 罗 琼, 谭鸿妮, 黄仕莉, 刘华英, 秦新民*:广西师范大学生命科学学院,广西 桂林
关键词: 沙田柚钙调素结合蛋白基因序列分析Citrus Grandis var. Shatinyu Hort Calmodulin-Binding Protein Gene Sequence Analysis
摘要: 利用高通量测序对沙田柚自交和异交花柱进行转录组测序,通过差异分析得到了沙田柚钙调素结合蛋白(CaMBP)基因序列。采用生物信息学方法,对其编码的蛋白质从序列特征、理化性质、跨膜结构域、高级结构以及功能域等方面进行了预测和分析。结果表明该基因全长为1616 bp,开放阅读框(ORF)全长为1368 bp,编码455个氨基酸,编码蛋白质的分子量为50.11 KDa,理论等电点为5.33。该蛋白质含有一个与钙调素结合蛋白相同的保守结构域。氨基酸序列比对结果显示,其编码的蛋白质与克莱门柚(Citrus clementina)的钙调结合蛋白相似性较高,相似度约为98%。这些分析结果可为今后深入研究该蛋白的结构特征和功能提供参考。
Abstract: In this paper, the transcriptome of the self-pollinated style and cross-pollinated style of Citrus grandis var. Shatinyu Hort were sequenced by high-throughput sequencing technology. A calmo-dulin-binding protein gene sequence of Citrus grandis var. Shatinyu Hort was obtained though differential analysis method, and some characters of the calmodulin-binding protein were analyzed and predicted by bioinformatics method, including the composition of amino acid sequence, physicochemical parameters, hydrophobicity, transmembrane domain, secondary structure and function of protein etc. The results showed that the calmodulin-binding protein gene was 1616 bp in length with an open reading frame (ORF) of 1368 bp, encoding 455 amino acids with deduced molecular weight of 50.11 KDa, and theoretical pI value of 5.33, and contained a calmodulin-binding proteins domain. Bioinformatics analysis showed that the calmodulin-binding protein was a hydrophobic and unstable protein. The homology analysis of amino acid sequence indicated that the calmodulin-binding protein shared high homology with calmodulin-binding protein of Citrus clementina (98%). This work provides a systemic sequence analysis of the calmodulin-binding protein of Citrus grandis var. Shatinyu Hort. It will provide the useful reference for further investigation of its structure and function.
文章引用:罗琼, 谭鸿妮, 黄仕莉, 刘华英, 秦新民. 沙田柚钙调素结合蛋白(CaMBP)基因的鉴定与序列分析[J]. 自然科学, 2017, 5(2): 203-210. https://doi.org/10.12677/OJNS.2017.52027

参考文献

[1] Takayama, S. and Isogai, A. (2005) Self-Incompatibility in Plants. Annual Review of Plant Biology, 56, 467-489.
[2] 薛妙男, 陈腾土, 杨继华. 沙田柚自交和异交亲和性观察[J]. 园艺学报, 1995, 22(2): 127-132.
[3] 杨继华, 李红艳, 薛妙男. 沙田柚花柱S-糖蛋白分离及鉴定[J]. 广西师范大学学报, 2000, 18(4): 66-70.
[4] 杨继华, 尧桂荣, 薛妙男. 沙田柚花柱S-糖蛋白的纯化和N-端序列测定[J]. 广西师范大学学报, 2001, 19(1): 72-79.
[5] 秦新民, 李惠敏, 薛妙男, 等. 沙田柚自交, 异交花粉管蛋白的双向电泳分析[J]. 广西植物, 2004, 24(6): 566-569.
[6] 薛妙男, 杨继华. 沙田柚花粉管在花柱中的生长途径及其识别[J]. 广西师范大学学报, 2001, 19(2): 60-66.
[7] 秦新民, 莫花浓, 万珊, 等. 沙田柚花粉管特异蛋白的免疫细胞化学研究[J]. 广西师范大学学报, 2008, 26(4): 113-115.
[8] 秦新民, 莫花浓, 石菁萍, 等. 沙田柚花粉管S1-RNase免疫胶体金定位研究[J]. 广西农业科学, 2009, 40(5): 483-485.
[9] Bariola, P.A., Howard, C.J., Taylor, C.B., et al. (1994) The Arabidopsis Ribonuclease Gene RNS1 Is Tightly Controlled in Response to Phosphate Limitation. The Plant Journal, 6, 673-685.
https://doi.org/10.1046/j.1365-313X.1994.6050673.x
[10] 秦新民, 张渝, 刘玉洁, 等. 沙田柚S-RNase基因的克隆及序列分析[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 139-145.
[11] Yang, T., Chaudhuri, S., Yang, L., Chen, Y. and Poovaiah, B.W. (2004) Calcium/Calmodulin Up-Regulates a Cytoplasmic Receptor-Like Kinase in Plants. Journal of Biological Chemistry, 279, 42552-42559.
https://doi.org/10.1074/jbc.M402830200
[12] Reddy, V.S., Aligs, G.S. and Reddy, A.S. (2002) Genes Encoding Calmodu-lin-Binding Proteins in the Arabidopsis Genome. Journal of Biological Chemistry, 277, 9840-9852.
https://doi.org/10.1074/jbc.M111626200
[13] Bouché, N., Yellin, A., Snedden, W.A. and Fromm, H. (2005) Plant-Specific Calmodulin Binding Proteins. Annual Review of Plant Biology, 56, 435-466.
https://doi.org/10.1146/annurev.arplant.56.032604.144224
[14] Distefano, G., Caruso, M., Malfa, S.L., Gentile, A. and Tribulato, E. (2009) Histological and Molecular Analysis of Pollen-Pistil Interaction in Clementine. Plant Cell Reports, 28, 1439-1451.
https://doi.org/10.1007/s00299-009-0744-9
[15] Thomas, S.G., Huang, S., Li, S., Staiger, C.J. and Franklintong, V.E. (2006) Actin Depolymerization Is Sufficient to Induce Programmed Cell Death in Self-Incompatible Pollen. The Journal of Cell Biology, 174, 221-229.
https://doi.org/10.1083/jcb.200604011
[16] Poultet, N.S., Vatovec, S. and Franklin-Tong, V.E. (2008) Microtubules Are a Target for Self-Incompatibility Signaling in Papaver Pollen. Plant Physiology, 146, 1358-1367.
https://doi.org/10.1104/pp.107.107052
[17] Bosch, M. and Franklin-Tong, V.E. (2008) Self-Incompatibility in Papaver: Signalling to Trigger PCD in Incompatible Pollen. Journal of Experimental Botany, 59, 481-490.
https://doi.org/10.1093/jxb/erm195
[18] Geitmann, A., Snowman, B.N., Emons, A.M.C. and Franklintong, V.E. (2000) Alterations in the Actin Cytoskeleton of Pollen Tubes Are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. The Plant Cell, 12, 1239-1251.
https://doi.org/10.1105/tpc.12.7.1239
[19] Sandro, D.A., Duca, S.D., Verderio, E., Hargreaves, A.J., Scarpellini, A., Cai, G., Cresti, M., Faleri, C., Iorio, R.A., Hirose, S., Furutani, Y., Coutts, I.G.C., Griffin, M., Bonner, P.L.R. and Serafini-Fracassini, D. (2010) An Extracellular Transglutaminase Is Required for Apple Pollen Tube Growth. Biochemical Journal, 429, 261-271.
https://doi.org/10.1042/BJ20100291
[20] Chai, L., Ge, X., Biswas, M.K., Xu, Q. and Deng, X. (2011) Self-Sterility in the Mutant “Zigui shatian” Pummelo (Citrus grandis Osbeck) Is Due to Abnormal Post-Zygotic Embryo Development and Not Self-Incompatibility. Plant Cell, Tissue and Organ Culture (PCTOC), 104, 1-11.
https://doi.org/10.1007/s11240-010-9793-6
[21] Miao, H.X., Qin, Y.H., da Silva, J.A.T., Ye, Z.X. and Hu, G.B. (2011) Cloning and Expression Analysis of S-RNase Homologous Gene in Citrus reticulata Blanco cv. Wuzishatangju. Plant Science, 180, 358-367.
[22] Ge, L.L., Tian, H.Q. and Russell, S.D. (2007) Calcium Function and Distribution during Fertilization in Angiosperms. American Journal of Botany, 94, 1046-1060.
https://doi.org/10.3732/ajb.94.6.1046