HJCET  >> Vol. 7 No. 3 (May 2017)

    耐硫加氢催化剂研究进展
    Advances in Sulfur Resistant Hydrogenation Catalysts

  • 全文下载: PDF(2998KB) HTML   XML   PP.122-132   DOI: 10.12677/HJCET.2017.73019  
  • 下载量: 861  浏览量: 1,982   国家自然科学基金支持

作者:  

潘 琦,钱 超,陈新志:浙江大学化学工程与生物工程学院,浙江省化工高效制造技术重点实验室,浙江 杭州;
蒋红华:杭州新德环保科技有限公司,浙江 建德

关键词:
耐硫加氢失活机理HDS (加氢脱硫)有机硫化合物Sulfur-Resistant Hydrogenation Deactivation Mechanism HDS (Hydrodesulfurization) Organic Sulfur Compounds

摘要:

催化加氢是常见的化工生产工艺,具有绿色高效等特点。但是,对于含硫化合物的催化加氢过程,易发生催化剂硫中毒的问题。而随着劣质高含硫原油产量的进一步增加,以及工业上对一些有机硫化合物诸如苯并噻吩类化合物的加氢还原产物的迫切需要,寻找合适的耐硫加氢催化剂成为了人们关心的热点问题。本文首先阐述了不同的硫化物(包括硫化氢、硫酸盐与有机硫)使催化剂中毒的机理,然后根据催化剂的失活机理分类阐述了各种不同的耐硫加氢催化剂的最新进展,并对目前的耐硫加氢催化剂进行了分析与展望。

Catalytic hydrogenation is a common chemical production process, which is with green and effi-cient features. However, the catalysts are prone to be sulfur-poisoning in the process of catalytic hydrogenation with sulfur-containing compounds. With the further increase in the yield of poor high-sulfur crude oil, as well as the urgent need in the industry for some hydrogenation products of organic sulfur compounds such as benzothiophenes, finding suitable sulfur-resistant hydrogenation catalysts has become a hot topic of concern. Firstly, the mechanism of poisoning of catalysts with different sulfides (including hydrogen sulfide, sulfate and organic sulfur) were described in this paper. Then, according to the deactivation mechanism of the catalyst, the latest progresses of various sulfur-resistant hydrogenation catalysts were discussed. At last, the current sulfur-resis- tant hydrogenation catalysts were analyzed and forecasted.

文章引用:
潘琦, 蒋红华, 钱超, 陈新志. 耐硫加氢催化剂研究进展[J]. 化学工程与技术, 2017, 7(3): 122-132. https://doi.org/10.12677/HJCET.2017.73019

参考文献

[1] 刘曌. 铜基低温变换催化剂硫中毒机理研究[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2013.
[2] Rossetti, I., Buchneva, O., Biffi, C., et al. (2009) Effect of Sulphur Poisoning on Perovskite Catalysts Prepared by Flame-Pyrolysis. Applied Catalysis B Environmental, 89, 383-390.
[3] 邓友全, 安立敦. 担载金属催化剂硫中毒机理及其再生方法研究Ⅰ.Pd(Pt)/Al2O3催化齐H2-O2反应下硫中毒机理的研究[J]. 分子催化, 1988, 2(2): 3-12.
[4] Menegazzo, F., Canton, P., Pinna, F., et al. (2008) Bimetallic Pd-Au Catalysts for Benzaldehyde Hydrogenation: Effects of Preparation and of Sulfur Poisoning. Catalysis Communications, 9, 2353-2356.
[5] Weng, D., Li, J., Wu, X., et al. (2008) Promotional Effect of Potassium on Soot Oxidation Activity and SO2-Poisoning Resistance of Cu/CeO2, Catalyst. Catalysis Communications, 9, 1898-1901.
[6] 李小定, 陈劲松. Co-Mo系催化剂失活的研究(Ⅱ): 硫酸盐化反应[J]. 物理测试, 1992(4): 6-10.
[7] Mellor, J.R., Copperthwaite, R.G. and Coville, N.J. (1997) The Selective Influence of Sulfur on the Performance of Novel Cobalt-Based Water-Gas Shift Catalysts. Applied Catalysis a General, 164, 69-79.
[8] Liu, Z.T., Zhou, J.L. and Zhang, B.J. (1994) Poisoning of Iron Catalyst by COS in Syngas for Fischer-Tropsch Synthesis. Journal of Molecular Catalysis, 94, 255-261.
[9] 黄星亮, 沈师孔. 有机硫化物使Pd/树脂催化剂中毒的规律与机理[J]. 催化学报, 2003, 24(3): 233-237.
[10] 宋娥媚. 燃料油加氢脱硫催化剂研究进展[C]//第七届全国工业催化技术及应用年会论文集. 2010: 93-95.
[11] 石亚华, 李大东, 刘学芬, 等. 一种馏分油加氢精制催化剂及其制备[P]. 中国, 1169336 A. 1998-01-07.
[12] 殷长龙, 夏道宏. 催化裂化汽油中类型硫含量分布[J]. 燃料化学学报, 2001, 29(3): 256-258.
[13] Kwart, H., Schuit, G.C.A. and Gates, B.C. (1980) Hydrodesulfurization of Thiophenic Compounds: The Reaction Mechanism. Journal of Catalysis, 61, 128-134.
[14] 都新丰. 燃料油加氢脱硫催化剂的进展[J]. 科技风, 2012(5): 55-55.
[15] 孙淑玲, 石亚华, 徐广通, 等. Co-Mo加氢脱硫催化剂的TEM表征[J]. 石油炼制与化工, 2006, 37(11): 1-6.
[16] 李哲哲, 唐美华, 秦雪茹, 等. 低温加氢脱噻吩NiMo催化剂的研究[J]. 现代化工, 2014, 34(12): 68-72.
[17] 鲁勋, 罗来涛, 程新孙. 二氧化铈对贵金属加氢脱硫催化剂的改性作用[J]. 精细石油化工, 2008, 25(3): 34-39.
[18] 徐坤. Ni-Mo2N催化剂的苯/噻吩加氢性能及其机理研究[D]: [硕士学位论文]. 太原: 太原理工大学, 2015.
[19] 李丽娜, 王海彦, 魏民, 等. MoP/TiO2-ZrO2加氢脱硫催化剂的研制[J]. 石油炼制与化工, 2008, 39(2): 16-20.
[20] 沈俭一, 石国军. 燃料油深度加氢脱硫催化剂的研究进展[J]. 石油化工, 2008, 37(11): 1111-1120.
[21] Sun, M., Nicosia, D. and Prins, R. (2003) The Effects of Fluorine, Phosphate and Chelating Agents on Hydrotreating Catalysts and Catalysis. Catalysis Today, 86, 173-189.
[22] Tanaka, H., Boulinguiez, M. and Vrinat, M. (1996) Hydrodesulfurization of Thiophene, Dibenzothiophene and Gas Oil on Various CoMo/TiO2-Al2O3, Catalysts. Catalysis Today, 29, 209-213.
[23] Zhang, L., Fu, W., Xiang, M., et al. (2015) MgO Nanosheet Assemblies Supported CoMo Catalyst with High Activity in Hydrodesulfurization of Dibenzothiophene. Industrial & Engineering Chemistry Research, 54, 5580-5588.
https://doi.org/10.1021/acs.iecr.5b00452
[24] Reddy, K.M. and Song, C. (1996) Synthesis of Mesoporous Zeolites and Their Application for Catalytic Conversion of Polycyclic Aromatic Hydrocarbons. Catalysis Today, 31, 137-144.
[25] Reddy, K.M. and Song, C. (1998) Effect of Al Sources on the Synthesis and Acidic Characteristics of Mesoporous Aluminosilicates of MCM-41 Type. Studies in Surface Science & Catalysis, 117, 291-299.
[26] 温钦武, 沈健, 李会鹏, 等. 介孔分子筛催化剂Co-Mo/SBA-15的制备及其加氢脱硫性能[J]. 石油学报(石油加工), 2009, 25(1): 42-47.
[27] 张博, 计扬, 骆念军, 等. 草酸二甲酯加氢制乙二醇催化剂失活研究: 硫中毒[J]. 天然气化工(C1化学与化工), 2012, 37(3): 39-43.
[28] Liu, F., Liu, L.L., Xue, D., et al. (2016) Crystal Transformation Synthesis, Hydrogenation Activity and Sulfur-Tolerant Performance of Pt Particles Encapsulated in Sodalite. Journal of Fuel Chemistry & Technology, 44, 477-482.
[29] Baldyga, L.M., Blavo, S.O., Kuo, C.H., et al. (2012) Size-Dependent Sulfur Poisoning of Silica-Supported Monodisperse Pt Nanoparticle Hydrogenation Catalysts. Acs Catalysis, 2, 2626-2629.
https://doi.org/10.1021/cs300625m
[30] Kim, H.J. and Song, C. (1996) Enhancing Sulfur Tolerance of Pd Catalysts by Hydrogen Spillover with Two Different Zeolite Supports for Low-Temperature Hydrogenation of Aromatics. Macroeconomic Policy and the Future of Capitalism, E. Elgar, 6788-6792.
[31] Okamoto, K., Akiyama, R. and Kobayashi, S. (2004) Recoverable, Reusable, Highly Active, and Sulfur-Tolerant Polymer Incarcerated Palladium for Hydrogenation. The Journal of Organic Chemistry, 69, 2871-2873.
https://doi.org/10.1021/jo0358527
[32] Urban, S., Beiring, B., Ortega, N., et al. (2012) Asymmetric Hydrogenation of Thiophenes and Benzothiophenes. Journal of the American Chemical Society, 134, 15241-15244.
https://doi.org/10.1021/ja306622y
[33] Malanga, C., Mannucci, S. and Lardicci, L. (2000) Nickel Mediated Reduction of Azides by Bu3SnH. Journal of Chemical Research, 2000, 256-257.
https://doi.org/10.3184/030823400103167273
[34] Lange, S., Elangovan, S., Cordes, C., et al. (2016) Selective Catalytic Hydrogenation of Nitriles to Primary Amines Using Iron Pincer Complexes. Catalysis Science & Technology, 6, 4768-4772.
https://doi.org/10.1039/C6CY00834H