土壤固化剂研究现状及其在软土加固中的应用前景
Research Progress of Soil Stabilization and Its Application Prospect in Soft Soil Reinforcement
DOI: 10.12677/HJCE.2017.63037, PDF, HTML, XML, 下载: 1,944  浏览: 3,565  科研立项经费支持
作者: 刘秀秀*, 吴朦, 吴俊:上海工程技术大学城市轨道交通学院,上海;翟杰群:同济大学建筑设计研究院(集团)有限公司轨道交通建筑设计院,上海
关键词: 土壤固化剂固化机理软土地基分类Soil Stabilization Curing Mechanism Soft Soil Foundation Classification
摘要: 土壤固化剂具有高效、低耗和节约能源的优点,是一种新型工程材料。而软土具有土质疏松、天然含水量高、透水性差、压缩性高等不良特性,在软土地基上进行工程施工时,往往会造成地基承载力不足、不均匀沉降等问题,故采用土壤固化剂对软土地基进行加固处理是一种有效的手段,具有广阔的应用前景。本文首先介绍了土壤固化剂的定义、分类和作用机理;然后介绍了土壤固化剂的国内外研究现状及适用范围;重点阐述了土壤固化剂在软土地基处理方面的应用以及相关研究成果;最后分析了当前软土固化剂研究中存在的问题,并针对软土地基采用固化剂时进一步研究方向。
Abstract: Soil stabilization is a new type of engineering materials with the character of high efficiency, low consumption and energy saving. The soft soil has the properties of loose, high natural water content, poor water permeability and high compressibility. When the construction is carried out on the soft soil ground, the uneven settlement may occur due to the insufficient bearing capacity of soft soil foundation. Therefore, soil stabilization is an effective method to reinforce the soft soil foundation, and then the bearing capacity of the foundation can be increased. In this paper, the definition, classification and mechanism of the soil stabilization were firstly introduced. Then, the research progress and scope of application of soil stabilization were given in details. After that, the application of soil stabilization and related research results in soft soil foundation treatment were further introduced and discussed. Finally, some drawbacks existing in the research of soft soil stabilization were analyzed, and future research was given.
文章引用:刘秀秀, 吴朦, 翟杰群, 吴俊. 土壤固化剂研究现状及其在软土加固中的应用前景[J]. 土木工程, 2017, 6(3): 318-327. https://doi.org/10.12677/HJCE.2017.63037

参考文献

[1] 顾昕. 新型无熟料碱渣固化剂研制及其固化土力学性能试验研究[D]: [硕士学术论文]. 上海: 上海大学, 2014.
[2] 郭晓琼. TG土质固化剂固化土基层应用研究[D]: [硕士学术论文]. 上海: 上海大学, 2014.
[3] 张登良. 加固土原理[M]. 北京: 人民交通出版社, 1990.
[4] 李学德. 双灰固化土本构关系及冻融损伤模型研究[D]: [硕士学术论文]. 杨凌: 西北农林科技大学, 2013.
[5] Peethamparan, S., Olek, J., Lovell, J., et al. (2008) Influence of Chemical and Physical Characteristics of Cement Kiln Dusts (CKDs) on Their Hydration Behavior and Potential Suitability for Soil Stabilization. Cement and Concrete Research, 38, 803-815.
[6] 丁毅. 土壤固化及其应用:筑路材料与技术的变革[M]. 北京: 中国大地出版社, 2009.
[7] 黄新, 胡同安. 水泥废石膏加固软土的试验研究[J]. 岩土工程学报, 1998, 20(5): 72.
[8] Pourakbar, S., Asadi, A., Huat, B.B.K., Fasihnikoutalab, M.H., et al. (2015) Stabilization of Clayey Soil Using Ultrafine Palm Oil Fuel Ash (POFA) and Cement. Transportation Geotechnics, 3, 24-35.
[9] Li, C., Lin, D.-F., et al. (2009) Stabilization Treatment of Soft Subgrade Soil by Sewage Sludge Ash and Cement. Journal of Hazardous Materials, 162, 321-327.
[10] 陈洁. 吹填土固化结构强度的再形成试验研究[D]: [硕士学术论文]. 武汉: 武汉科技大学, 2010.
[11] 杨有海, 刘永河, 任新, 等. 水泥搅拌饱和黄土强度影响因素试验研究[J]. 铁道工程学报, 2016, 1(33): 21-25, 64.
[12] Cristelo, N., Glendinning, S., Fernandes, L., Pinto, A.T., et al. (2013) Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation. Acta Geotechnica, 8, 395-405.
https://doi.org/10.1007/s11440-012-0200-9
[13] Gilazghi, S.T., Huang, J., Rezaeimalek, S., Bin-Shafique, S., et al. (2016) Stabilizing Sulfate-Rich High Plasticity Clay with Moisture Activated Polymerization. Engineering Geology, 211, 171-178.
[14] 刘清秉, 项伟, 崔德山, 曹李靖, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 4: 648-654.
[15] 楼蓉蓉, 刘顺昌, 等. ISS离子固化剂改性膨胀土试验研究[J]. 江西建材, 2016, 20: 212.
[16] 耿轶君. EN-1土壤固化剂改良红砂岩的作用机理与路用性能研究[D]: [硕士学术论文]. 成都市: 西南交通大学, 2009.
[17] Chang, I., Cho, G., et al. (2012) Strengthening of Korean Residual Soil with β-1,3/1,6-Glucan Biopolymer. Construction and Building Materials, 30, 30-35.
[18] Animesh, S., Ramkrishnan, R., et al. (2016) Study on Effect of Microbial Induced Calcite Precipitates on Strength of Fine Grained Soils. Perspectives in Science, 8, 198-202.
[19] 张心平, 苏海涛, 彭红涛, 等. 派酶固化土壤的无侧限强度的试验研究[J]. 公路, 2008(6): 171-172.
[20] 李威. 泰然酶固化剂固化土壤的试验研究[J]. 湖南交通科技, 2016, 42(2): 81-85.
[21] 高大钊. 土力学与基础工程[M]. 北京: 中国建筑工业出版社, 1999.
[22] Ahmed, A. (2015) Compressive Strength and Microstructure of Soft Clay Soil Stabilized with Recycled Bassanite. Applied Clay Science, 104, 27-35.
[23] 方祥位, 孙树国, 等. GT型土壤固化剂改良土的工程特性研究[J]. 岩土力学, 2006, 9: 1545-1548.
[24] 李战国, 赵永生, 黄新, 等. 工业废渣制备软土地基固化剂设计方法探讨[J]. 北京航空航天大学学报, 2009, 4: 497-500.
[25] 朱向阳. 水泥土搅拌桩处置连云港软土地基的试验研究[D]: [硕士学术论文]. 南京市: 河海大学, 2007.
[26] 赵梦凝. 高钙粉煤灰粉喷桩在软土地基加固的应用研究[D]: [硕士学术论文]. 大连: 大连理工大学, 2012.
[27] Phetchuay, C., Horpibulsuk, S., Arulrajah, A., Suksiripattanapong, C., Udomchai, A., et al. (2016) Development in Soft Marine Clay Stabilized by Fly Ash and Calcium Carbide Residue Based Geopolymer. Applied Clay Science, 127-128,134-142.
[28] 易耀林, 李晨, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1820-1826.
[29] 邢维忠. GGB固化合肥湖积软土的力学特性试验研究[D]: [硕士学术论文]. 安徽: 安徽建筑大学, 2015.
[30] 邓永锋, 吴子龙, 刘松玉, 等. 地质聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 3: 446-453.
[31] 王广政, 马青娜, 刘亚文, 等. CHF固化剂在软土地基加固中的试验研究[J]. 山西建筑, 2016, 27: 72-73.
[32] 任葳葳. 高分子材料改性淤泥质土及其机理研究[D]: [硕士学术论文]. 重庆: 重庆大学, 2015.
[33] 涂帆, 常方强, 等. 水泥土无侧限抗压强度影响因素的室内试验研究[J]. 工程勘察, 2005, 3: 8-10.
[34] 宁建国, 黄新. 土样矿物成分对固化土抗压强度增长的影响[J]. 岩土力学, 2010, 1: 113-117.
[35] 宁建国, 黄新, 许晟, 等. 土样pH值对固化土抗压强度增长的影响研究[J]. 岩土工程学报, 2007, 1: 98-102.
[36] 王领. 上海黏性土与水泥混合后强度增长特性试验研究[J]. 岩土力学, 2010, 3: 743-747.
[37] Lorenzo, G.A., Bergado, D.T., et al. (2006) Fundamental Characteristics of Cement-Admixed Clay in Deep Mixing. Journal of Materials in Civil Engineering, 18, 161-174.
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161)
[38] 李雪刚. 杭州海相软土的固化及其理论研究[D]: [博士学术论文]. 杭州: 浙江大学, 2013.
[39] 徐日庆, 李俊虎, 蔡承晟, 李雪刚, 荣雪宁, 畅帅, 等. 用固化剂GX08加固杭州海湖相软土的强度特性研究[J]. 岩土力学, 2014, 6: 1528-1533 + 1554.
[40] 王立峰, 翟惠云, 等. 纳米硅水泥土抗压强度的正交试验和多元线性回归分析[J]. 岩土工程学报, 2010, 32: 452- 457.
[41] Zhang, D.W., Chen, L., Liu, S.Y., et al. (2012) Key Parameters Controlling Electrical Resistivity and Strength of Cement Treated Soils. Journal of Central South University, 19, 2991-2998.
https://doi.org/10.1007/s11771-012-1368-8