MS  >> Vol. 7 No. 3 (May 2017)

    Effects of Zr and Ti Contents on Oxide Nanoparticles in Al-Alloyed High-Cr ODS Steels

  • 全文下载: PDF(1117KB) HTML   XML   PP.413-422   DOI: 10.12677/MS.2017.73055  
  • 下载量: 305  浏览量: 1,705   国家自然科学基金支持


窦 鹏,张 鑫:重庆大学材料科学与工程学院,重庆;
贺跃辉:中南大学粉末冶金国家重点实验室,湖南 长沙;

氧化物弥散强化钢透射电子显微学高分辨透射电子显微学共格性错配莫尔条纹Oxide Dispersion Strengthened (ODS) Steel Transmission Electron Microscopy (TEM) High Resolution Transmission Electron Microscopy (HRTEM) Coherency Misfit Moiréfringes


为了研究活性元素Zr和Ti的含量对铝添加高铬氧化物弥散强化钢(oxide dispersion strengthened steel, ODS钢)中纳米粒子的影响,本文利用透射电子显微学(包括衍射衬度技术)和高分辨透射电子显微学对采用机械合金化工艺制备的ODS-Zr-1 (Fe-15Cr-4Al-2W-0.15Ti-0.3Zr-0.35Y2O3)合金中氧化物进行了表征。与无锆添加含铝高铬ODS钢——SOC-9 (Fe-15.5Cr-4Al-2W-0.1Ti-0.35Y2O3)相比,添加0.3 wt.%的Zr使ODS-Zr-1合金中氧化物纳米粒子的弥散形貌与共格性显著改善。ODS-Zr-1合金中尺寸小于10 nm的粒子的数量比例为~98%,其中绝大多数粒子为与体心立方铁素体基体相共格的并具有三角晶体结构的δ相Y4Zr3O12复合氧化物。在ODS-Zr-1合金中也发现少量的Y2TiO5和YTiO3复合氧化物粒子的存在。本文将所得结果与SOC-9和SOC-14 (Fe-15Cr-4Al-2W-0.1Ti-0.63Zr-0.35Y2O3)合金中氧化物纳米粒子的表征结果对比,并据此简要分析讨论了锆和钛含量对铝添加高铬ODS钢纳米氧化物的高温稳定性与耐辐照稳定性的影响机理。

In order to study the effects of zirconium and titanium contents on the nanoparticles in Al-added high-Cr ODS steels and the oxides of ODS-Zr-1 (Fe-15Cr-4Al-2W-0.15Ti-0.3Zr-0.35Y2O3) which was synthesized by mechanical alloying, have been examined by transmission electron microscopy (TEM), including diffraction contrast techniques, and high resolution transmission electron mi-croscopy (HRTEM). Relative to SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), i.e., an Al-alloyed high-Cr ODS steel without Zr addition, not only the dispersion morphology but also the coherency of the nanoparticles in ODS-Zr-1 was significantly improved. About 98% of the oxides are smaller than 10 nm. Most of the nanoparticles were found to be consistent with trigonal δ-phase Y4Zr3O12 oxides and coherent with the bcc steel matrix. Y2TiO5 and YTiO3 oxides were also detected in ODS-Zr-1. The results of ODS-Zr-1 were compared with those of SOC-9 and SOC-14 (Fe-15Cr-2W- 0.1Ti-4Al-0.63Zr-0.35Y2O3) with a brief discussion of the mechanisms of the effects of the addition of zirconium and titanium on the unusual thermal and irradiation stabilities of the oxides in ODS steels.

窦鹏, 张鑫, 木村晃彦, 贺跃辉, 刘锦川. 锆和钛含量对铝添加高铬ODS钢氧化物粒子的影响[J]. 材料科学, 2017, 7(3): 413-422.


[1] 中国工程院“我国核能发展的再研究”项目组. 我国核能发展的再研究[M]. 北京: 清华大学出版社, 2015.
[2] 中国科技技术协会主编, 中国核学会编著. 核科学技术学科发展报告(2014-2015) [M]. 北京: 中国科学技术出版社, 2016.
[3] Murty, K. and Charit, I. (2008) Structural Materials for Gen-IV Nuclear Reactors: Challenges and Op-portunities. Journal of Nuclear Materials, 383, 189-195.
[4] Allen, T., Sridharan, K., Tan, L., et al. (2008) Materials Challenges for Generation IV Nuclear Energy Systems. Nuclear Technology, 162, 342-357.
[5] Heikinheimo, L., Aaltonen, P. and Toivonen, A. (2007) Generation IV Material Issues. Energy Materials, 2, 72-77.
[6] 李冠兴, 武胜, 核燃料. 核材料科学与工程[M]. 北京: 化学工业出版社, 2007.
[7] 谢光善, 张汝娴. 快中子堆燃料元件[M]. 北京: 化学工业出版社, 2007.
[8] 白新德. 核材料化学[M]. 北京: 化学工业出版社, 2007.
[9] Brandes, M.C., Kovarik, L., Miller, M.K., et al. (2011) Creep Behavior and Deformation Mechanisms in a Nanocluster Strengthened Ferritic Steel. Acta Materialia, 60, 1827-1839.
[10] Kimura, A., Kasada, R., Iwata, N., Kishimoto, H., Zhang, C.H., Isselin, J., Dou, P., et al. (2011) De-velopment of Al Added High-Cr ODS Steels for Fuel Cladding of Next Generation Nuclear Systems. Journal of Nuclear Materials, 417, 176-179.
[11] Ukai, S., Nishida, T., Okuda, T., et al. (1998) R&D of Oxide Dispersion Strengthened Ferritic Martensitic Steels for FBR. Journal of Nuclear Materials, 258-263, 1745-1749.
[12] Grimes, R.W. and Nuttall, W.J. (2010) Generating the Option of a Two-Stage Nuclear Renaissance. Science, 329, 799-803.
[13] Ukai, S. and Fujiwara, M. (2002) Perspective of ODS Alloys Ap-plication in Nuclear Environments. Journal of Nuclear Materials, 307-311, 749-757.
[14] Zinkle, S.J. and Was, G.S. (2013) Materials Challenges in Nuclear Energy. Acta Materialia, 61, 735-758.
[15] Odette, G.R., Alinger, M.J. and Wirth, B.D. (2008) Recent Developments in Irradiation-Resistant Steels. Annual Review of Materials Research, 38, 471-503.
[16] Yoshida, E. and Kato, S. (2004) Sodium Compatibility of ODS Steel at Elevated Temperature. Journal of Nuclear Materials, 329-333, 1393-1397.
[17] Hirata, A., Fujita, T., Wen, Y., et al. (2011) Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels. Nature Materials, 10, 922-926.
[18] Yu, C.Z., Oka, H., Hashimoto, N., et al. (2011) Development of Damage Structure in 16Cr-4Al ODS Steels during Electron-Irradiation. Journal of Nuclear Materials, 417, 286-288.
[19] Yutani, K., et al. (2007) Evaluation of Helium Effects on Swelling Behavior of Oxide Dispersion Strengthened Ferritic Steels under Ion Irradiation. Journal of Nuclear Materials, 367-370, 423-427.
[20] Dou, P., Kimura, A., Kasada, R., et al. (2014) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Steel with Zr Addition. Journal of Nuclear Materials, 444, 441-453.
[21] Dou, P., Kimura, A., Okuda, T., et al. (2011) Polymorphic and Coherency Transition of Y-Al Complex Oxide Particles with Extrusion Temperature in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel. Acta Materialia, 59, 992-1002.
[22] Dou, P., Kimura, A., et al. (2011) Effects of Extrusion Temperature on the Nano-Mesoscopic Structure and Mechanical Properties of an Al-Alloyed High-Cr ODS Ferritic Steel. Journal of Nuclear Materials, 417, 166-170.
[23] Dou, P., Kimura, A., Kasada, R., et al. (2017) TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel with Hf Addition. Journal of Nuclear Materials, 485, 189-201.
[24] Ohnuki, S., Hashimoto, N., Ukai, S., Kimura, A., et al. (2009) Super ODS Steels R&D for Fuel Cladding of Next Generation Nuclear Systems, 2) Effect of Minor Alloying Elements. Proceedings of the ICAPP 2009, Tokyo, Japan, Article ID: 9306.
[25] Gao, R., Zhang, T., Wang, X., et al. (2014) Effect of Zirconium Addition on the Microstructure and Mechanical Properties of ODS Ferritic Steels Containing Aluminum. Journal of Nuclear Materials, 444, 462-468.
[26] Kasada, R., Toda, N., Yutani, K., et al. (2007) Pre- and Post-Deformation Microstructures of Oxide Dispersion Strengthened Ferritic Steels. Journal of Nuclear Materials, 367, 222-228.
[27] Dou, P., Kimura, A., Kasada, R., et al. (2013) Effects of Titanium Concentration and Tungsten Addition on the Nano-Mesoscopic Structure of High-Cr Oxide Dispersion Strengthened (ODS) Ferritic Steels. Journal of Nuclear Materials, 442, S95-S100.
[28] Iwamura, S. and Miura, Y. (2004) Loss in Coherency and Coarsening Behavior of AlSc Precipitates. Acta Materialia, 52, 591-600.
[29] Hin, C. and Wirth, B.D. (2010) Formation of Y2O3 Nanoclusters in Nano-Structured Ferritic Alloys: Modeling of Precipitation Kinetics and Yield Strength. Journal of Nuclear Materials, 402, 30-37.
[30] Zener, C. (1949) Theory of Growth of Spherical Precipitates from Solid Solution. Journal of Applied Physics, 20, 950-953.
[31] Ribis, J. and de Carlan, Y. (2012) Interfacial Strained Structure and Orientation Relationships of the Nano Sized Oxide Particles Deduced from Elasticity-Driven Morphology in Oxide Dispersion Strengthened Materials. Acta Materialia, 60, 238-252.
[32] Bai, X.M., et al. (2010) Efficient Annealing of Radiation Damage near Grain Boundaries via Interstitial Emission. Science, 327, 1631-1634.
[33] Ackland, G. (2010) Controlling Radiation Damage. Science, 327, 1587-1588.
[34] Sickafus, K.E., Grimes, R.W., Valdez, J.A., et al. (2007) Radiation-Induced Amorphization Resistance and Radiation Tolerance in Structurally Related Oxides. Nature Materials, 6, 217-223.