MS  >> Vol. 7 No. 3 (May 2017)

    Research of Using a New Type of Cu/Cu2O/TiO2 Electrode Detecting Saccharides Content

  • 全文下载: PDF(1639KB) HTML   XML   PP.423-430   DOI: 10.12677/MS.2017.73056  
  • 下载量: 104  浏览量: 153   国家自然科学基金支持


谭 林,龙 梅,唐爱东:中南大学化学化工学院,湖南 长沙

Cu/Cu2O纳米粒子TiO2纳米管非酶葡萄糖传感器电催化Cu/Cu2O Nanoparticles TiO2 Nanotube Arrays Non-Enzymatic Glucose Biosensor Electrocatalysis


本实验采用二次阳极氧化结合简单的电沉积方法制备新型Cu/Cu2O/TiO2(CCT)电极。我们通过扫描电镜(SEM)、X射线衍射仪(XRD)和电化学工作站对产物的形貌、晶相和电催化性能进行了表征,发现簇状大颗粒形貌的Cu/Cu2O分散在TiO2纳米管中。通过对比研究电极在0.1 M NaOH溶液条件下,分别对葡萄糖、果糖和蔗糖的电催化氧化结果。可以发现葡萄糖的催化氧化电流最高,而果糖的氧化电位最低,蔗糖的催化氧化性能最差。使用该电极能分别检测较低浓度的三种糖,其中对果糖检测性能最好,其线性响应范围为0~3.5 mM (R2 = 0.99),灵敏度为3560 µA cm−2•mM−1,检测限(LOD)为1.3 µM。该电极对葡萄糖与果糖混合溶液的最高氧化电流密度可达8 mA cm−2,表现出了相当好的电催化氧化性能,未来有望在糖类燃料电池领域得到应用。

Cu/Cu2O/TiO2 (CCT) nanotube arrays electrode has been fabricated by secondary anodic oxidation combination of electrodeposition method. The structure and morphology of the CCT were charac-terized by X-ray diffraction (XRD) and Scanning electron microscope (SEM) respectively and the electrochemical performances of the electrode were performed on electrochemical workstation. The SEM result showed that the large sized, cluster-liked Cu/Cu2O particles have dispersed in CCT nanotubes. When the electrode was used as electrocatalytic oxidation of the glucose, fructose and sucrose under 0.1 M of NaOH aqueous solution, the tested results showed that the glucose has the highest oxidated current, the fructose has the lowest oxidated electric potential but the sucrose has the poorest electrocatalytic oxidation performance among these three saccharides. Moreover, when the electrode was utilized as detection for the low concentrations of saccharides, the electrode showed excellent detection performance for fructose. Its linear response could reach up to 3.5 mM (R2 = 0.99) with detection limit of 1.3 μM (signal/noise = 3) and the sensitivity is 3560 µA cm−2•mM−1. Meanwhile, the electrode showed outstanding electrocatalytic oxidation performance that the oxidation electric current could reach to 8 mA cm−2 for the glucose and fructose mixed aqueous solution. The electrode had the potential application prospect and expected to be applied in carbohydrate fuel cells.

谭林, 龙梅, 唐爱东. 新型Cu/Cu2O/TiO2电极检测糖含量的研究[J]. 材料科学, 2017, 7(3): 423-430.


[1] Jiang, L.-C. and Zhang, W.-D. (2010) A Highly Sensitive Nonenzymatic Glucose Sensor Based on CuO Nanoparticles- Modified Carbon Nanotube Electrode. Biosensors and Bioelectronics, 25, 1402-1407.
[2] Basu, D. and Basu, S. (2010) A Study on Direct Glucose and Fructose Alkaline Fuel Cell. Electrochimica Acta, 55, 5775-5779.
[3] Wang, G., He, X., Wang, L., Gu, A., Huang, Y., Fang, B., Geng, B. and Zhang, X. (2013) Non-Enzymatic Electrochemical Sensing of Glucose. Microchimica Acta, 180, 161-186.
[4] Kang, X., Mai, Z., Zou, X., Cai, P. and Mo, J. (2007) A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode. Analytical Biochemistry, 363, 143-150.
[5] Yuan, B., Xu, C., Liu, L., Zhang, Q., Ji, S., Pi, L., Zhang, D. and Huo, Q. (2013) Cu2O/NiOx/graphene Oxide Modified Glassy Carbon Electrode for the Enhanced Electrochemical Oxidation of Reduced Glutathione and Nonenzyme Glucose Sensor. Electrochimica Acta, 104, 78-83.
[6] Huo, C. and Yang, H. (2013) Preparation and Enhanced Photocatalytic Activity of Pd-CuO/Palygorskite Nanocomposites. Applied Clay Science, 74, 87-94.
[7] Yang, J., Zhang, W.-D. and Gunasekaran, S. (2010) An Amperometric Non-Enzymatic Glucose Sensor by Electrodepositing Copper Nanocubes onto Vertically Well-Aligned Multi-Walled Carbon Nanotube Arrays. Biosensors and Bioelectronics, 26, 279-284.
[8] Luo, J., Jiang, S., Zhang, H., Jiang, J. and Liu, X. (2012) A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Analytica Chimica Acta, 709, 47-53.
[9] Roy, P., Berger, S. and Schmuki, P. (2011) TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50, 2904-2939.
[10] Zhang, X., Yang, H. and Tang, A. (2008) Optical, Electrochemical and Hydrophilic Properties of Y2O3 Doped TiO2 Nanocomposite Films. The Journal of Physical Chemistry B, 112, 16271-16279.
[11] Long, M., Tan, L. and Tang, A.D. (2014) The Effects of Electroplating Conditions on the Morphology and Glucose Oxidation Performance of Cu2O/TiO2. Advanced Materials Research, 937, 3-8.
[12] Long, M., Tan, L., Liu, H., He, Z. and Tang, A. (2014) Novel Helical TiO2 Nanotube Arrays Modified by Cu2O for Enzyme-Free Glucose Oxidation. Biosensors and Bioelectronics, 59, 243-250.
[13] Huang, L., et al. (2011) Controlled Synthesis of Octahedral Cu2O on TiO2 Nanotube Arrays by Electrochemical Deposition. Materials Chemistry and Physics, 130, 316-322.
[14] Wei, H., Sun, J.-J., Guo, L., Li, X. and Chen, G.-N. (2009) Highly Enhanced Electrocatalytic Oxidation of Glucose and Shikimic Acid at a Disposable Electrically Heated Oxide Covered Copper Electrode. Chemical Communications, No. 20, 2842-2844.
[15] Yang, Z., Chiang, C.-K. and Chang, H.-T. (2008) Synthesis of Fluorescent and Photovoltaic Cu2O Nanocubes. Nanotechnology, 19, Article ID: 025604.
[16] Singh, A.K., Srivastava, S., Srivastava, J., Srivastava, R. and Singh, P. (2007) Studies in Kinetics and Mechanism of Oxidation of D-Glucose and D-Fructose by Alkaline Solution of Potassium Iodate in the Presence of Ru(III) as Homogeneous Catalyst. Journal of Molecular Catalysis A: Chemical, 278, 72-81.
[17] Singh, S.V., Saxena, O. and Singh, M.P. (1970) Mechanism of Copper(II) Oxidation of Reducing Sugars. I. Kinetics and Mechanism of Oxidation of D-Xylose, L-Arabinose, D-Glucose, D-Fructose, D-Mannose, D-Galactose, L-Sorbose, Lactose, Maltose, Cellobiose, and Melibiose by Copper(II) in Alkaline Medium. Journal of the American Chemical Society, 92, 537-541.
[18] Parpot, P., Kokoh, K., Beden, B. and Lamy, C. (1993) Electrocatalytic Oxidation of Saccharose in Alkaline Medium. Electrochimica Acta, 38, 1679-1683.