MP  >> Vol. 7 No. 3 (May 2017)

    Physical Properties Studies of Pb2Te3O8 Synthesized by Hydrothermal Method

  • 全文下载: PDF(1647KB) HTML   XML   PP.44-51   DOI: 10.12677/MP.2017.73007  
  • 下载量: 62  浏览量: 104   国家自然科学基金支持


马 艳:西南交通大学物理科学技术学院,材料先进技术教育部重点实验室,四川 成都;
王文丹:西南交通大学,高压科学与技术重点实验室,四川 成都;
张林基:西南交通大学物理科学技术学院,材料先进技术教育部重点实验室,四川 成都;西南交通大学,高压科学与技术重点实验室,四川 成都

Pb2Te3O8水热法红外吸收光谱高压拉曼光谱Pb2Te3O8 Hydrothermal Synthesis Infrared Absorption Spectrum High Pressure Raman Spectra


利用水热合成法制备了Pb2Te3O8单晶样品,通过晶体结构精修软件GSAS对X射线衍射图谱的精修确定了样品相及其结构参数。随后对Pb2Te3O8进行了红外吸收光谱以及高压拉曼光谱测试。红外光谱实验中确定了Pb2Te3O8对应的红外吸收峰位置,高压拉曼研究是利用金刚石压砧在室温下进行,在0.3~21.8 GPa压强范围内测定了拉曼光谱,通过分析拉曼峰的频移和劈裂变化情况,发现随着压力的增加所有振动模的频率是单调线性变化的并且没有新峰出现,拉曼谱图的这种变化表明在Pb2Te3O8在压力高达21.8 GPa高压拉曼实验中并没有压力引起的相变发生。

Pb2Te3O8 samples were prepared by hydrothermal synthesis. The phase and structural parameters of the synthesized Pb2Te3O8 sample were determined by Rietveld refinement of the observed powder XRD data. The infrared absorption spectra, ambient pressure and high pressure Raman spectra of Pb2Te3O8 were measured. The infrared absorption peak of Pb2Te3O8 was determined by infrared spectroscopy. The high-pressure Raman study was carried out at room temperature by using a diamond anvil, and the Raman spectra were measured in the range of 0.3 - 21.8 GPa. By analyzing the frequency shift and splitting of the Raman peak, it is found that the frequency of all the vibrational modes varies monotonically and without the presence of new peaks as the pressure increase, this change in the Raman spectrum indicates that the structure of Pb2Te3O8 can be stabilized to 21.8 GPa without phase transition.

马艳, 王文丹, 张林基. 水热法合成Pb2Te3O8及其物性研究[J]. 现代物理, 2017, 7(3): 44-51.


[1] Gospodinov, G. and Atanasova, L. (2007) Thermodynamic Properties of Germanium and Lead Tellurites. Journal of Thermal Analysis and Calorimetry, 87, 557-559.
[2] Aly, K.A., Saddeek, Y.B. and Dahshan, A. (2015) Structure and Crystallization Kinetics of Manganese Lead Tellurite Glasses. Journal of Thermal Analysis and Calorimetry, 119, 1215-1224.
[3] Valery, E., Zavodnik, A., Sergey, A., Ivanova, B. and Adam, I. (2007) The γ-Phase of SrTeO3 at 583 K. Acta Crystallographica Section E Structure Reports Online, 63, 151.
[4] Valery, E., Zavodnik, A., Sergey, A., Ivanova, B. and Adam, I. (2008) α-Lead Tellurite from Single-Crystal Data. Acta Crystallographica, 64, 16.
[5] Kaur, A., Khanna, A., Pesquera, C., et al. (2010) Preparation and Characterization of Lead and Zinc Tellurite Glasses. Journal of Non-Crystalline Solids, 356, 864-872.
[6] Champarnaud-Mesjard, J.C., Thomas, P., Colas-Dutreilh, M. and Oufkir, A. (2001) Crystal Structure of Dilead Tritellurate(IV),Pb2Te3O8. Kristallogr, 216, 185-186.
[7] Gaitán, M., Jerez, A., Noguerales, P., et al. (1988) New Methods of Synthesis of Mixed Oxides of Te and Pb: Characterization of the New Phases PbTeO3 (Cubic) and PbTeO4 (Orthorhombic). ChemInform, 19, 479-490.
[8] Balraj, V. and Vidyasagar, K. (1999) Syntheses and Characterization of Novel Three-Dimensional Tellurites, Na2MTe4O12 (M = W, Mo), with Intersecting Tunnels. Inorganic Chemistry, 38, 5809-5813.
[9] Chi, E.O., Ok, K.M., Porter, Y. and Halasyamani, P.S. (2006) Na2Te3Mo3O16:  A New Molybdenum Tellurite with Second-Harmonic Generating and Pyroelectric Properties. Chemistry of Materials, 18, 2070-2074.
[10] Hanke, K.V., Kupcik, O. and Lindqvist, I. (1973) The Crystal Structure of a tellu-rium(IV,VI) Oxyhydroxide, H2Te2O6. Acta Crystallographica Section B, 29, 963.
[11] Pertlik, F.J. (1987) Dimorphism of Hydrothermal Synthesized Copper Tellurite, CuTeO3: The Structure of a Monoclinic Representative. Journal of Solid State Chemistry, 71, 291-295.
[12] Platte, C. and Tromel, M. (1981) Nickelditellurat(IV): Sauerstoffkoordinationszahl Fünf am Vierwertigen Tellur. Acta Crystallographica Section B, 37, 1276-1278.
[13] Gu, Q.H., Hu, C.L. and Mao, J.G. (2011) A Series of New Phases in the Alkali Metal-Nb(V)/Ta(V)-Se(IV)/Te(IV)-O Systems. Dalton Transactions, 40, 2562.
[14] Dutreilh, M., Thomas, P., Champar-naud-Mesjard, J.C. and Frit, B. (2001) Crystal Structure of a New Gallium Tellurite: Ga2Te4O11. Solid State Sciences, 3, 423-431.
[15] Abriel, W. and Naturforsch. Z. (1981) Advances in Inorganic Chemistry. Materials Research Bulletin, 36, 405.
[16] Feger, C.R. and Kolis, J.W. (1998) V2MnTeO7. Acta Crystallographica Section C, 54, 1217-1219.
[17] Ok, K.M., Orzechowski, J. and Halasyamani, P.S. (2004) Synthesis, Structure, and Characterization of Two New Layered Mixed-Metal Phosphates, BaTeMO4(PO4) (M = Nb5+ or Ta5+). Inorganic Chemistry, 43, 964-968.
[18] Mandarino, J.A., Williams, S.J. and Mitchell, R.S. (1962) Denningite, a New Tellurite Mineral from Moctezuma, Sonoro, Mexico. American Mineralogist, 47, 196.
[19] Perez, G., Lasserre, F., Moret, J. and Frit, B. (1971) Le Système NiO-TeO2 à 700°C. Comptes Rendus de l'Académie des Sciences, 272, 77.
[20] Tromel, M., Schmid, D. and Anorg, Z. (1972) Tellurite des zweiwertigen Mangans, Kobalts Und Nickels. Zeitschrift für Anorganische und Allgemeine Chemie, 387, 230.
[21] Kohn, K., Inoue, K., Horie, O. and Akimoto, S. (1976) Crystal Chemistry of M SeO3 and M TeO3(M = Mg, Mn, Co, Ni, Cu, and Zn). Journal of Solid State Chemistry, 18, 27.
[22] Walsh, A., Payne, D.J., Egdell, R.G. and Watson, G.W. (2011) Stereochemistry of Post-Transition Metal Oxides: Revision of the Classical Lone Pair Model. Chemical Society Reviews, 40, 4455-4463.
[23] Solovyev, I. (2012) Magnetic Structure of the Noncentrosymmetric Perovskites PbVO3and BiCoO3: Theoretical Analysis. Physical Review B, 85, Article ID: 054420.
[24] Zhou, W., Tan, D., Xiao, W., Song, M., Chen, M., Xiong, X. and Xu, J. (2012) Structural Properties of PbVO3 Perovskites under Hydrostatic Pressure Conditions Up to 10.6GPa. Journal of Physics: Condensed Matter, 24, Article ID: 435403.
[25] Shpanchenko, R.V., Chernaya, V.V., Tsirlin, A.A., Chizhov, P.S., Sklovsky, D.E., Antipov, E.V., Khlybov, E.P., Pomjakushin, V., Balagurov, A.M. and Medvedeva, J.E. (2004) Synthesis, Structure, and Properties of New Perovskite PbVO3.Chemistry of Materials, 16, 3267-3273.
[26] Cheng, J.G., Kweon, K.E., Larregola, S.A., Ding, Y., Shirako, Y., Marshall, L.G., Li, Z.Y., Li, X., Dos Santos, A.M., Suchomel, M.R., Matsubayashi, K., Uwatoko, Y., Hwang, G.S., Goodenough, J.B. and Zhou, .J.S. (2015) Charge Disproportionation and the Pressure-Induced Insulator-Metal Transition in Cubic Perovskite PbCrO3. Proceedings of the National Academy of Sciences of the United States of America, 112, 1670-1674.
[27] Larrégola, S., Alonso, J., Algueró, M., Jiménez, R., Suard, E., Porcher, F. and Pedregosa, J. (2010) Effect of the Pb2+ Lone Electron Pair in the Structure and Properties of the Double Perovskites Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6: Relaxor State Due to Intrinsic Partial Disorder. Dalton Transactions, 39, 5159-5165.
[28] Baldinozzi, G., Sciau, P. and Lapasset, J. (1992) Crystal Structure of Pb2 CoWO6 in the Cubic Phase. Physica Status Solidi, 133, 17-23.
[29] Baldinozzi, G., Sciau, P., Moret, J. and Buffat, P.A. (1994) A New Incommensurate Phase in a Lead Ordered Perovskite: Pb2MgTeO6. Solid State Communications, 89, 441-445.
[30] Park, Y. and Cho, K. (2000) Dielectric-State Analysis in Solid-Solution Pb(Yb1/2Ta1/2)O3-Pb(Lu1/2Nb1/2)O3. Journal of the American Ceramic Society, 83, 135-140.
[31] Gaitán, M., Jerez, A., Noguerales, P., Pico, C. and Veiga, M.L. (1987) New Methods of Synthesis of Mixed Oxides of te and Pb: Characterization of the New Phases PbTeO3 (Cubic) and PbTeO4 (Orthorhombic). Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 17, 479-490.
[32] Arnaudov, M., Dimitrov, V., Dimitriev, Y., et al. (1982) Infrared-Spectral Investigation of Tellurites. Materials Research Bulletin, 17, 1121-1129.