IJE  >> Vol. 6 No. 2 (May 2017)

    Plant Diversity Characteristics of Wetland in the Middle Reaches of the Yellow River

  • 全文下载: PDF(690KB) HTML   XML   PP.112-123   DOI: 10.12677/IJE.2017.62013  
  • 下载量: 480  浏览量: 1,109   科研立项经费支持


赵天梁:山西省林业调查规划院,山西 太原

黄河中游湿地谱系多样性谱系结构功能多样性Middle Reaches of the Yellow River Wetland Phylogenetic Diversity Pedigree Structure Functional Diversity


以黄河中游湿地植物为研究对象,构建了黄河中游湿地植物谱系树。采用谱系多样性指数(PD)、群落谱系结构指数(净谱系亲缘关系指数NRI和最近种间亲缘关系指数NTI)和7个功能多样性指数(功能丰富度指数FAD1、FDp、FDc、FRic;功能均匀度指数FEve;功能离散度指数Rao、FDis),分析了黄河中游湿地植物的谱系多样性、谱系结构与功能多样性,并计算了物种多样性指数(物种丰富度指数Patrick、物种均匀度指数Pielou和综合表示物种丰富度与物种均匀度的Shannon-Wiener以及Simpson指数)。结果表明:(1) 13个样地谱系多样性指数的范围在706.894~2289.170,PD值从大到小依次为:S1 > S12 > S3 > S6 > S2 > S4 > S5 > S13 > S9 > S7 > S11 > S8 > S10;样地S1、S9、S12和S13中,群落谱系结构为聚集模式,物种之间有聚集的趋势;其他样地中的NRI指数与NTI指数结果正负不一致;样地S2的功能丰富度最低,样地S1的功能丰富度最高,样地S2的功能均匀度最低,样地S4的功能均匀度最高,由于Rao的计算公式未修订,其值越大说明离散度越小,说明样地S2的功能离散度低的可能性较大。(2) PD与NRI、NTI、Patrick指数之间分别呈显著正相关(p = 0.045)、显著负相关(p = 0.015)和显著正相关(p = 0.000);NRI与Patrick指数之间呈显著正相关(p = 0.021),其余指数之间均无显著相关性。

Taking the wetland plants in the middle reaches of the Yellow River as the research object, the phylogenetic tree of the wetland plants was constructed. Pedigree diversity index (PD), community lineage structure index (net genetic relationship index, NRI and recent interspecific relationship index, NTI), functional diversity index (FAD1, FDp, FDc, FRic, FEve, Rao and Dis) were used to analyze the phylogenetic diversity, pedigree structure and functional diversity of wetland plants in the middle reaches of the Yellow River were analyzed, and the species diversity index was also calculated. The main results are as follows: (1) Based on the APGIII classification system, the range of α diversity index (PD) of the 13 plots was calculated from the phylogenetic software Phylocom in the range of 706.894 - 2289.17, and the PD values were in the order of S1 > S12 > S3 > S6 > S2 > S4 > S5 > S13 > S9 > S7 > S11 > S8 > S10. By studying the structure of the community, we found that in the plots S1, S9, S12 and S13, the community lineage structure was the aggregation pattern, and the species had a tendency to gather. In the other plots, the relationship between NRI and NTI was positive and negative, which led to the inability to determine whether the community lineage was aggregated or divergent. The functional richness of plot S2 was the lowest, and plot S1 was the highest. The functional evenness of sample S2 was the lowest, and plot S4 was the highest. Since Rao’s formula is not revised, the larger the value, the smaller the dispersion is, indicating that the likelihood of low dispersion of the plot S2 was greater. (2) PD showed significantly positive correlation with NRI (p = 0.045), negative correlation with NTI (p = 0.015), and positive correlation with species diversity index (p = 0.000). There was a significantly positive correlation between NRI and species diversity index (p = 0.021). There was no significant correlation between the other indices.

赵天梁. 黄河中游湿地植物多样性特征研究[J]. 世界生态学, 2017, 6(2): 112-123. https://doi.org/10.12677/IJE.2017.62013


[1] Tilman, D., Reich, P.B., Knops, J., et al. (2001) Diversity and Productivity in a Long-Term Grassland Experiment. Science, 294, 843-845.
[2] Swenson, N.G. (2011) The Role of Evolutionary Processes in Producing Biodiversity Patterns, and the Interrelationships between Taxonomic, Functional and Phylogenetic Biodiversity. American Journal of Botany, 98, 472-480.
[3] 贾鹏, 杜国祯. 生态学的多样性指数: 功能与系统发育[J]. 生命科学, 2014, 26(2): 153-157.
[4] Gray, A. (1846) Analogy between the Clora of Japan and That of the United States. American Journal of Sciences and Arts, 2, 175-176.
[5] Wen, J. (2003) Evolution of Eastern Asian and Eastern North American Disjunct Distributions of Flowering Plants. Annual Review of Ecology and Systematics, 30, 421-455.
[6] Latham, R.E., Ricklefs, R.E., Ricklefs, R.E., et al. (1993) Continental Comparisons of Temperate-Zone Tree Species Diversity. In: Species Diversity in Ecological Communities: Historical and Geographical Perspectives, 294-314.
[7] Guo, Q., Ricklefs, R.E. and Cody, M.L. (1998) Vascular Plant Diversity in Eastern Asia and North America: Historical and Ecological Explanations. Botanical Journal of the Linnean Society, 128, 123-136.
[8] Jaccard, P. (1926) Le coefficient generique et le coefficient de communaute dans la flore marocaine. Mémoires de la Société Vaudoise des Sciences Naturelles, 2, 385-403.
[9] Jaccard, P. (1940) Coefficient générique réel et coefficient générique probable. Bulletin De La Societe Vaudoise Des Sciences Naturelles, 61, 117-136.
[10] Elton, C. (1946) Competition and the Structure of Ecological Communities. Journal of Animal Ecology, 15, 54-68.
[11] Simberloff, D.S. (1970) Taxonomic Diversity of Island Biotas. Evolution, 24, 23-47.
[12] Grant, P.R. and Abbott, I. (1980) Interspecific Competition, Island Biogeography and Null Hypotheses. Evolution, 34, 332-341.
[13] Harvey, P.H., Colwell, R.K., And, J.W.S., et al. (2003) Null Models in Ecology. Annual Review of Ecology and Systematics, 14, 189-211.
[14] Jarvinen, O. (1982) Species-to-Genus Ratios in Biogeography: A Historical Note. Journal of Biogeography, 9, 363- 370.
[15] Wiens, J.J. and Graham, C.H. (2005) Niche Conservatism: Integrating Evolution, Ecology and Conservation Biology. Annual Review of Ecology Evolution and Systematics, 36, 519-539.
[16] Peterson, A.T., Sobern, J. and Sanchez-Cordero, V. (1999) Conservatism of Ecological Niches in Evolutionary Time. Science, 285, 1265-1267.
[17] Wiens, J.J., Ackerly, D.D., Allen, A.P., et al. (2010) Niche Conservatism as an Emerging Principle in Ecology and Conservation Biology. Ecology Letters, 13, 1310-1314.
[18] Webb, C.O., Ackerly, D.D., McPeek, M.A., et al. (2002) Phylogenies and Community Ecology. Annual Review of Ecology and Systematics, 33, 475-505.
[19] Cavenderbares, J., Ackerly, D.D., Baum, D.A., et al. (2004) Phylogenetic over Dispersion in Floridian Oak Communities. The American Naturalist, 163, 823-843.
[20] Webb, C.O. and Donoghue, M.J. (2005) Phylomatic: Tree Assembly for Applied Phylogenetics. Molecular Ecology Resources, 5, 181-183.
[21] Webb, C.O. (2000) Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. The American Naturalist, 156, 145-155.
[22] Petchey, O.L. and Gaston, K.J. (2006) Functional Diversity: Back to Basics and Looking Forward. Ecology Letters, 9, 741-758.
[23] Mouillot, D., Mason, W.H., Dumay, O., et al. (2005) Functional Regularity: A Neglected Aspect of Functional Diversity. Oecologia, 142, 353-359.
[24] 上官铁梁, 宋伯为, 朱军, 等. 黄河中游湿地资源及可持续利用研究[J]. 干旱区资源与环境, 2005, 19(1): 7-13.
[25] 郭东罡, 上官铁梁, 白中科, 等. 黄河中游连伯滩湿地景观格局变化[J]. 生态学报, 2011, 31(18): 5192-5198.
[26] 李帅, 张婕, 上官铁梁, 等. 黄河中游湿地植物分类学多样性研究[J]. 植物科学学报, 2015, 33(6): 775-783.
[27] 秦晓娟. 山西平陆黄河湿地植被数量生态研究[D]: [硕士学位论文]. 太原市: 山西大学, 2015.
[28] 樊杰, 上官铁梁, 宋伯为. 黄河中游(禹门口-桃花峪)河漫滩种子植物区系地理研究[J]. 植物科学学报, 2003, 21(4): 332-338.
[29] 李秋玲, 范庆安, 马晓勇, 等. 山西黄河湿地植被优势种群种间关系[J]. 生态学杂志, 2007, 26(10): 1516-1520.
[30] 陈英. 常绿阔叶林谱系多样性对幼苗存活率的影响[J]. 植物生态学报, 2009, 33(6): 1084-1089.
[31] 柴永福, 岳明. 植物群落构建机制研究进展[J]. 生态学报, 2016, 36(15): 4557-4572.
[32] Mcwilliams, W., Moisen, G.G. and Czaplewski, R.L. (2009). Forest Inventory and Analysis (FIA) Symposium 2008, Park City, 21-23 October 2008, 56.
[33] 黄建雄, 郑凤英, 米湘成. 不同尺度上环境因子对常绿阔叶林群落的谱系结构的影响[J]. 植物生态学报, 2010, 34(3): 309-315.
[34] Zhang, J., Hao, Z., Song, B., et al. (2009) Fine-Scale Species Co-Occurrence Patterns in an Old-Growth Temperate Forest. Forest Ecology and Management, 257, 2115-2120.
[35] 冷海楠, 崔福星, 张荣涛, 等. 兴安落叶松林植物群落谱系结构研究[J]. 黑龙江科学, 2014(12): 10-12.
[36] 刘巍, 曹伟. 长白山植物群落谱系结构及环境因子对其的影响[J]. 干旱区资源与环境, 2013, 27(5): 63-68.
[37] 李志. 梅里雪山针阔混交林沿海拔梯度的群落谱系结构、数量分类与排序[D]: [硕士学位论文]. 昆明市: 云南大学, 2015.
[38] 卜文圣, 许涵, 臧润国, 等. 不同采伐干扰方式对热带山地雨林谱系结构的影响[J]. 林业科学, 2014, 50(4): 15-21.
[39] 宋凯, 米湘成, 贾琪, 等. 不同程度人为干扰对古田山森林群落谱系结构的影响[J]. 生物多样性, 2011, 19(2): 190-196.
[40] 王建勋. 基于不同放牧强度的高寒草原植物功能性状及群落谱系构建研究[D]: [博士学位论文]. 北京: 中国农业大学, 2016.