JWRR  >> Vol. 6 No. 3 (June 2017)

    基于BP神经网络的尼尔基水库水质评价
    Water Quality Evaluation Based on BP Neural Network in Nierji Reservoir

  • 全文下载: PDF(3653KB) HTML   XML   PP.247-253   DOI: 10.12677/JWRR.2017.63029  
  • 下载量: 131  浏览量: 547   国家科技经费支持

作者:  

张 正,郑国臣:松辽流域水资源保护局,吉林 长春;
秦 雨:松辽流域水资源保护局,吉林 长春;长春工程学院,吉林 长春;
李 聪:松辽委水文局嫩江水文水资源中心,黑龙江 齐齐哈尔;
王兆波:长春工程学院,吉林 长春

关键词:
BP神经网络水质综合评价尼尔基水库单因子评价BP Neural Network Comprehensive Evaluation of Water Quality Nierji Reservoir Single Factor Evaluation

摘要:

根据溶解氧、高锰酸盐指数、化学需氧量、氨氮、总氮、总磷的实测数据,本文基于BP神经网络对尼尔基水库水质进行了综合评价,评价结果表明:近年来水库水质介于IV至V类之间。水库库尾水质较库中和坝前水质略好,汛期水质与非汛期水质差别不大,介于IV至V类之间,水库水质污染问题尚未得到有效解决。BP神经网络综合评价方法相较于传统的单因子评价方法,评价结果更为客观、合理。

According to the measured data of O2, KMnO4, COD, NH3-N, TN, TP, the BP neural network was used to evaluate the water quality of Nierji Reservoir in this paper, the results showed: in recent years, the water qua- lity of the reservoir was between IV to V. The water quality of the reservoir tail is slightly better than that of the reservoir and the dam, the water quality of the flood season and non-flood season are between IV to V, and the problem of reservoir water pollution has not been effectively solved. Compared with the tradi- tional single factor evaluation method, the result of BP neural network is more objective and reasonable.

文章引用:
张正, 秦雨, 李聪, 王兆波, 郑国臣. 基于BP神经网络的尼尔基水库水质评价[J]. 水资源研究, 2017, 6(3): 247-253. https://doi.org/10.12677/JWRR.2017.63029

参考文献

[1] 周绪申, 罗阳, 郑国臣, 等. 尼尔基水库浮游植物多样性初步研究[J]. 东北水利水电, 2013(3): 30-32. ZHOU Xushen, LUO Yang, ZHENG Guochen, et al. Preliminary study on phytoplankton diversity in the reservoir of the north east of China. Water Resources & Hydropower of Northeast China, 2013(3): 30-32. (in Chinese)
[2] 王彤彤, 张剑, 涂川, 赵文芳, 陈明明, 赵成章. IPSO-BP神经网络在渭河天水段水质评价中的应用[J]. 环境科学与技术, 2013(8): 175-181. WANG Tongtong, ZHANG Jian, TU Chuan, ZHAO Wenfang, CHEN Mingming and ZHAO Chengzhang. Application of IPSO-BP neural network in water quality assessment of Weihe water quality. Environmental Science and Technology, 2013(8): 175-181. (in Chinese)
[3] 徐兵兵, 张妙仙, 肖肖. 改进的模糊层次分析法在南菩溪临安段水质评价中的应用[J]. 环境科学学报, 2011, 31(9): 2066- 2072. (in Chinese) XU Bingbing, ZHANG Miaoxian and XIAO Xiao. Soil improved fuzzy AHP analysis method in the South Puget Creek Lin’an section of the water quality evaluation in application. Environmental Sciences Journal, 2011, 31 (9): 2066-2072. (in Chinese)
[4] 鲁珍, 李哗, 马啸, 等. 大冶湖2000~2009年地表水质评价及污染趋势预测[J]. 环境科学与技术, 2012, 35(5): 174-178. LU Zhen, LI Wow, MA Xiao, et al. Daye lake from 2000 to 2009 in surface water quality assessment and pollution trend prediction. Environmental Science and Technology, 2012, 35(5): 174-178. (in Chinese)
[5] 张德丰, 等. Matlab神经网络应用设计[M]. 北京: 机械上业出版利, 2009. ZHANG Defeng, et al. Matlab neural network application design. Beijing: Mechanical Industry Press, 2009. (in Chinese)
[6] 崔永华, 左其亭. 基于Hopficld网络的水质综合评价及其Matlab实现[J]. 水资源保护, 2007, 23(3): 14-17. CUI Yonghua, ZUO Qiting. Hopficld network and the implementation of Matlab. Protection of Water Resources, 2007, 23(3): 14-17. (in Chinese)
[7] 周梅, 李政, 凌海波, 等. 基于BP神经网络的义水河水环境质量评价研究[J]. 环境科学与技术, 2012, 35(5): 385-388. ZHOU Mei, LI Zheng, LING Haibo, et al. Study on the environmental quality assessment of the water environment quality based on BP neural network. Environmental Science and Technology, 2012, 35 (5): 385-388. (in Chinese)
[8] JU, Q., YU, Z. B., HAO, Z. C., et al. Division-based rainfall -runoff simulations with BP neural networks and Xinanjiang mo- del. Neurocomputing, 2009(72): 2873-2883.
[9] 李雪, 刘长发, 朱学慧, 等. 基于BP人工神经网络的海水水质综合评价[J]. 海洋通报, 2010, 29(2): 225-230. LI Xue, LIU Changfa, ZHU Xuehui, et al. A comprehensive evaluation of seawater quality based on BP artificial neural network. Marine Bulletin, 2010, 29(2): 225-230. (in Chinese)
[10] 崔东文. BP神经网络在盘龙河水质综合评价中的应用[J]. 水科学与工程技术, 2011(2): 15-16. CUI Dongwen. BP neural network in comprehensive evaluation of water quality in Panlong River. Water Science and Engineering Application of Technology, 2011(2): 15-16. (in Chinese)