电力系统最小虚假数据攻击向量的建模与分析
Model Building and Analysis of Minimal False-Data Attack Vector Launched on Power System
DOI: 10.12677/SG.2017.73017, PDF, HTML, XML, 下载: 1,648  浏览: 3,692  国家自然科学基金支持
作者: 阮嘉祺, 彭建春*:深圳大学机电与控制工程学院,广东 深圳;江 辉:深圳大学光电工程学院,广东 深圳
关键词: 智能电网虚假数据攻击攻击向量状态估计监测控制与数据获取Smart Grid False-Data Attack Attack Vector State Estimation SCADA
摘要: 本文提出了一种电力系统最小虚假数据攻击向量的建模方法。这种方法以被攻击电网的局部子环网为对象,以其节点注入功率的改变量最小为目标函数,以边界节点状态量不变和出现线路阻塞以及节点功率平衡为约束条件,建立虚假数据攻击向量的数学模型。用这种方法得到的攻击向量篡改局部电网检测数据后,全电网仍然满足节点功率平衡约束、自然躲过传统状态估计的检测,且虚假线路阻塞经过安全校正系统的调节会使电网陷入真正不安全状态,从而达到攻击目的。仿真结果表明,本文方法生成的攻击向量不仅有效、而且易于获取。
Abstract: A model for building minimal false-data attack vector launched on power systems is proposed in this paper. It is based on a local looped sub-network. The model’s objective function is minimizing the changes in bus injection powers. The model’s constraints include that the values of border state variables remain unchanged; a line congestion occurs and bus power balance equations. It is thus an optimization problem. Adding the attack vector produced by this model to actual measurements from the local looped sub-network gives a false-data attack to the power system. In this way, all bus power balance equations are still satisfied for the whole grid. As a result, the false- data attack naturally avoids the check from power system state estimation software. The false line congestion will lead the security correction system to action that will place the power system on a true not secure state, achieving the aim of an attack. Simulation results show that the attack vector produced by the proposed model is not only effective but easy to achieve.
文章引用:阮嘉祺, 彭建春, 王怀智, 江辉. 电力系统最小虚假数据攻击向量的建模与分析[J]. 智能电网, 2017, 7(3): 153-160. https://doi.org/10.12677/SG.2017.73017

参考文献

[1] Schweppe, F.C. and Wildes, J. (1970) Power System Static-State Estimation, Part I: Exact Model. IEEE Transactions on Power Apparatus & Systems, 89, 120-125.
https://doi.org/10.1109/TPAS.1970.292678
[2] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985.
[3] 朱杰, 张葛祥, 王涛, 等. 电力系统状态估计欺诈性数据攻击及防御综述[J]. 电网技术, 2016, 40(8): 2406-2415.
[4] 周京阳, 于尔铿. 能量管理系统(EMS) [J]. 电力系统自动化, 1997(5): 75-78.
[5] Liang, J., Sankar, L. and Kosut, O. (2015) Vulnerability Analysis and Consequences of False Data Injection Attack on Power System State Estimation.
[6] 郭庆来, 辛蜀骏, 王剑辉, 等. 由乌克兰停电事件看信息能源系统综合安全评估[J]. 电力系统自动化, 2016(5): 145-147.
[7] Van Cutsem, T., Ribbens-Pavella, M. and Mili, L. (1985) Bad Data Identification Methods in Power System State Estimation—A Comparative Study. IEEE Transactions on Power Apparatus & Systems, 104, 3037-3049.
https://doi.org/10.1109/TPAS.1985.318945
[8] Monticelli, A., Wu, F.F. and Yen, M. (1986) Multiple Bad Data Identification for State Estimation by Combinatorial Optimization. IEEE Power Engineering Review, 6, 73-74.
https://doi.org/10.1109/MPER.1986.5527891
[9] Liu, Y., Ning, P. and Reiter, M.K. (2009) False Data Injection Attacks against State Estimation in Electric Power Grids. ACM Transactions on Information & System Security, 14, 21-32.
https://doi.org/10.1145/1653662.1653666
[10] Yuan, Y., Li, Z. and Ren, K. (2011) Modeling Load Redistribution Attacks in Power Systems. IEEE Transactions on Smart Grid, 2, 382-390.
https://doi.org/10.1109/TSG.2011.2123925
[11] Qin, Z., Li, Q. and Chuah, M.C. (2012) Defending against Unidentifiable Attacks in Electric Power Grids. IEEE Transactions on Parallel & Distributed Systems, 99, 1-11.
[12] Sou, K.C., Sandberg, H. and Johansson, K.H. (2012) On the Exact Solution to a Smart Grid Cyber-Security Analysis Problem. IEEE Transactions on Smart Grid, 4, 856-865.
https://doi.org/10.1109/TSG.2012.2230199
[13] Mili, L., Cheniae, M.G., Vichare, N.S., et al. (1996) Robust State Estimation Based on Projection Statistics [of Power Systems]. IEEE Transactions on Power Systems, 11, 1118-1127.
https://doi.org/10.1109/59.496203
[14] Power System Test Case Archive Univ. Washington, Dept. Elect. Eng., 2007.
[15] Zimmerman, R.D., Murillo-SáNchez, C.E. and Thomas, R.J. (2011) MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26, 12-19.
https://doi.org/10.1109/TPWRS.2010.2051168