基于频响函数矩阵法的薄板结构阻尼系数识别
Recognition of Structural Damping Coefficient of Thin Plate Based on the Frequency Response Matrix Method
DOI: 10.12677/MET.2017.62019, PDF, HTML, XML, 下载: 1,599  浏览: 3,671  国家科技经费支持
作者: 朱全军:全球能源互联网研究院,北京;樊习英:国网山西省电力公司经济技术研究院,山西 太原;曹枚根:中国电力科学研究院,北京;韩清鹏*, 任建兴, 李天成:上海电力学院能源与机械工程学院,上海
关键词: 频响函数矩阵法薄板结构阻尼系数Frequency Response Function Matrix Method Thin Plate Damping Coefficient
摘要: 机械系统的粘性或结构阻尼系数可以从空间上描述系统的阻尼分布,这对于阻尼结构减振设计具有重要的意义。本文研究基于频响函数矩阵法来辨识悬臂薄板结构系统阻尼系数。详细叙述了频响函数矩阵法的原理和测试流程。在此基础上组建了辨识结构系统阻尼系数的测试系统,对薄板结构进行了测试分析。从识别的阻尼矩阵可以看出,无论是粘性阻尼还是结构阻尼,薄板根部的数值均大于自由端的数值。比较不同频带的阻尼系数,可以看出在低频段粘性阻尼系数较大,而在高频段结构阻尼系数较大。
Abstract: The distribution of system damp could be described by the internal friction and structure damped coefficient. It was important for design of reducing vibration of the damping structure. The damping coefficient of cantilever thin plate was identified by the frequency response function matrix method in this paper. The principle and test process were introduced. The test system was built to identify the damping coefficient. The thin plate was analyzed by the system. The data of the plate root were all bigger than that of freedom end no matter the damping matrix was inherent friction or the structural damping coefficient. The inner friction coefficient of low frequency band was bigger, while the structural damping coefficient of high frequency band was bigger.
文章引用:朱全军, 樊习英, 曹枚根, 韩清鹏, 任建兴, 李天成. 基于频响函数矩阵法的薄板结构阻尼系数识别[J]. 机械工程与技术, 2017, 6(2): 133-139. https://doi.org/10.12677/MET.2017.62019

参考文献

[1] 李敏花, 柏猛, 吕英俊. LM算法在二阶过阻尼系统参数估计中的应用[J]. 自动化仪表, 2016, 36(7): 90-93.
[2] 胡钢墩, 李发泽. 惯性系统的时域在线辨识[J]. 控制与决策, 2010, 25(1): 133-136.
[3] 陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压-冲量曲线简化计算研究[J]. 振动与冲击, 2016, 35(13): 224-232.
[4] Lee, J.-H. and Kim, J. (2001) Identification of Damping Matrices from Measured Frequency Response Functions. Journal of Sound and Vibration, 240, 545-556.
[5] Lee, J.-H. and Kim, J. (2001) Development and Validation of a New Experimental Method to Identify Damping Matrices of a Dynamic System. Journal of Sound and Vibration, 246, 505-524.