JWRR  >> Vol. 6 No. 4 (August 2017)

    土地利用与覆被变化对流域水电生产影响研究—福建省九龙江流域为例
    Measuring and Mapping the Impact of Land Use and Land Cover Change on the Hydropower Production—A Case Study of Jiulong River in Fujian Province

  • 全文下载: PDF(2058KB) HTML   XML   PP.370-383   DOI: 10.12677/JWRR.2017.64044  
  • 下载量: 162  浏览量: 218   国家自然科学基金支持

作者:  

黄珠美,彭本荣:厦门大学环境与生态学院,福建 厦门

关键词:
水电生产InVEST模型土地利用/覆被变化九龙江流域Hydropower Production InVEST Land Use/Land Cover Jiulong River Watershed

摘要:

水电是全球利用最广泛的可更新能源,其生产能力对土地利用/覆被的变化非常敏感。研究土地利用/覆被变化与流域水电生产的数量、价值及其空间分布的关系是流域水资源规划和管理的基础。本论文应用InVEST模型评估九龙江流域土地利用/覆被变化对水电生产数量及其价值的影响。结果表明:2000~2010年间,九龙江流域内,土地利用/覆被主要由蒸散量较大的耕地和林地转化为蒸散量较小的建设用地,产水量增加了0.66%。但由于耕地和建设用地的耗水量较其他土地利用/覆被类型大,水电生产的供水量却降低了8.46%,导致流域年均水电生产量减少1.22亿kwh,年均利润减少0.40亿元,减少幅度分别达到5.56%和6.69%。流域内水电生产数量减少主要是由土地利用/覆被变化大的城市子流域发电量减少引起的。模型验证结果显示,模型结果与实际产水量、发电量的误差分别在6%和5%以内,模型具有很高的可靠性。研究同时显示,九龙江流域产水量由上游向下游递减,上游子流域单位面积和万吨供水量水电生产的潜力最高,对流域水电生产的贡献最大,因此上游子流域的保护对流域水供给服务和水电服务能力的保障非常关键。

As the most widely used form of renewable energy in the world, the hydropower production is very sensitive to the land use and cover change (LUCC). Measuring and mapping changes in the quantity and value of hydropower production are the basis of water resource management and watershed spatial planning. This paper evaluated the impacts of LUCC on the hydropower production in Jiulong River watershed (JRW) employing the reservoir hydropower production and valuation model of InVEST. The results show that the water yield increased by 0.66% from 2000 to 2010 in JRW since LUCC is mainly converted from arable land and forest with higher evapotranspiration to construction land with lower evapotranspiration. However, the annual water supply for power generation decreased by 8.46%, due to the water consumption in arable land and construction land are higher than other land cover type, which resulted in 1.22 × 108 kwh decrease of the annual hydropower production and 4.0 × 107 yuan decrease of net present value separately. The reduction of hydropower production and its value are mainly located in urban subwatersheds whose land use cover change significantly by transforming the forest and arable land to the construction land. The model error is in the range of 6% and 5% of the actual water production and power generation respectively, and the model has high reliability. The results also show that the volume of water yield decreased from upstream to downstream, and the hy-dropower production capacity of subwatersheds in upstream is much higher than that of the down-stream. The subwatersheds in the upstream with higher water yield are critical to the water supply services in the JRW, which should be conserved when developing the spatial planning and other so-cial-economic planning in the watershed.

文章引用:
黄珠美, 彭本荣. 土地利用与覆被变化对流域水电生产影响研究—福建省九龙江流域为例[J]. 水资源研究, 2017, 6(4): 370-383. https://doi.org/10.12677/JWRR.2017.64044

参考文献

[1] COSTANZA, R., ARGE, R. D., GROOT, R. D., et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387: 253-260.
https://doi.org/10.1038/387253a0
[2] COSTANZA, R., DE GROOT, R., SUTTON, P., et al. Changes in the global value of ecosystem services. Global Environmental Change, 2014, 26(1): 152-158.
[3] SHARP, R., TALLIS, H.T., RICKETTS, T., GUERRY, A.D., et al. In vest user’s guide. Stanford: The Natural Capital Project, 2014.
[4] WCD (The World Commission on Dams). Dams and development: A new framework for decision-making: The report of the world commission on dams. Earthscan Publications, 2000.
[5] 秦长海, 甘泓, 贾玲, 等. 水价政策模拟模型构建及其应用研究[J]. 水利学报, 2014, 45(1): 109-116. QIN Changhai, GAN Hong, JIA Ling, et al. A model building for water price policy simulation and its application. Journal of Hydraulic Engineering, 2014, 45(1): 109-116. (in Chinese)
[6] 李丹丹, 陈南祥, 李耀辉, 等. 基于能值理论与方法的区域可利用水资源价值研究[J]. 中国农村水利水电, 2015(3): 22- 24. LI Dandan, CHEN Nanxiang, LI Yaohui, et al. Research on available regional water resources value based on energy theory. China Rural Water and Hydropower, 2015(3): 22-24. (in Chinese)
[7] 王欢. 基于边际效用理论的水资源价值研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2012. WANG Huan. Research of water resources value based on the theory of marginal utility. Beijing: Beijing University of Technology, 2012. (in Chinese)
[8] 王洪梅. 水电开发对河流生态系统服务及人类福利综合影响评价[D]: [博士学位论文]. 中国科学院研究生院(成都山地灾害与环境研究所), 2007. WANG Hongmei. Integrated assessment on hydro-electricity to river ecosystem services and human wellbeing. Beijing: China Academy of Sciences, 2007. (in Chinese)
[9] 陈敏, 李绍才, 孙海龙, 等. 雅砻江下游梯级开发对河流生态系统服务功能的影响[J]. 水力发电学报, 2011, 30(1): 89-94. CHEN Min, LI Shaocai, SUN Hailong, et al. Impact of cascade hydropower development in the lower-reach of Yalong river on river ecosystem services. Journal of Hydroelectric Engineering, 2011, 30(1): 89-94. (in Chinese)
[10] 郝彩莲, 尹军, 张诚, 等. 承德武烈河流域水生态系统服务功能经济价值研究[J]. 南水北调与水利科技, 2011, 9(4): 91- 95. HAO Cailian, YIN Jun, ZHANG Cheng, et al. Economic value of service functions of freshwater ecosystem in the Wulie river basin. South-to-North Water Diversion and Water Science & Technology, 2011, 9(4): 91-95. (in Chinese)
[11] 莫创荣, 孙艳军, 高长波, 等. 生态价值评估方法在水电开发环境评价中的应用研究[J]. 水资源保护, 2006, 22(5): 18-21. MO Chuangrong, SUN Yanjun, GAO Changbo, et al. Application of ecological value evaluation method in environment assessment of hydropower development. Water Resources Protection, 2006, 22(5): 18-21. (in Chinese)
[12] 马静, 刘宇. 基于可计算一般均衡模型的大型水电项目经济影响评价初探[J]. 水力发电学报, 2015, 34(5): 166-180. MA Jing, LIU Yu. Economic impact assessment of large-scale hydropower project based on computable general equilibrium model. Journal of Hydroelectric Engineering, 2015, 34(5): 166-180. (in Chinese)
[13] 贾金生, 徐耀, 马静, 等. 关于水电回报率、与经济社会发展协调性及发展理念探讨[J]. 水力发电学报, 2012, 31(5): 1-5. JIA Jinsheng, XU Yao, MA Jing, et al. Discussion on hydropower return, its relationship with socio-economic development and new concept for development. Journal of Hydroelectric Engineering, 2012, 31(5): 1-5. (in Chinese)
[14] 丁晓阳, 费丽春. 尼尔基水利枢纽综合效益分析与国民经济评价[J]. 水力发电学报, 2002, 21(4): 5-10. DING Xiaoyang, FEI Lichun. Comprehensive benefits and national economy evaluation of Nierji water project. Journal of Hydroelectric Engineering, 2002, 21(4): 5-10. (in Chinese)
[15] 福建省统计局. 福建省统计年鉴[M]. 北京: 中国统计出版社, 2015. Fujian Provincial Bureau of Statistics. Fujian statistical yearbook. Beijing: China Statistics Press, 2015. (in Chinese)
[16] 福建省水利厅. 福建省九龙江流域综合规修编报告[R]. 2006. Ministry of Water Resources in Fujian Province. Integrated planning in Jiulong river of Fujian province. 2006. (in Chinese)
[17] 吴哲, 陈歆, 刘贝贝, 等. InVEST模型及其应用的研究进展[J]. 热带农业科学, 2013, 33(4): 58-62. WU Zhe, CHEN Xin, LIU Beibei, et al. Research progress and application of InVEST model. Chinese Journal of Tropical Agriculture, 2013, 33(4): 58-62. (in Chinese)
[18] FU, B. P. On the calculation of the evaporation from land surface. Scientia Atmospherica Sinica, 1981, 5(1): 23-31.
[19] ZHANG, L., HICKEL, K., DAWES, W. R., et al. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 2004, 40(2): 89-97.
https://doi.org/10.1029/2003wr002710
[20] GUPTA, S., LARSON, W. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resources Research, 1979, 15(6): 1633-1635.
https://doi.org/10.1029/WR015i006p01633
[21] FAO/IIASA/ISRIC/ISSCAS/JRC. Harmonized world soil database (version 1.2). Rome: FAO and Laxenburg: IIASA, 2012.
[22] 吴哲, 陈歆, 刘贝贝, 等. 不同土地利用/覆盖类型下海南岛产水量空间分布模拟[J]. 水资源保护, 2014, 3: 9-13. WU Zhe, CHEN Xin, LIU Beibei, et al. Simulation of spatial distribution of water yield of Hainan Island with different types of land use/land cover. Water Resources Protection, 2014, 3: 9-13. (in Chinese)
[23] ZHANG, C. Q., LI, W. H., ZHANG, B., et al. Water yield of Xitiaoxi river basin based on InVEST modeling. Journal of Resources and Ecology, 2012, 1: 50-54.
[24] ZHANG, L., DAWES, W. R., WALKER, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708.
https://doi.org/10.1029/2000WR900325
[25] ALLEN, R. G., PEREIRA, L. S., RAES, D., et al. Crop evapotranspiration Guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Rome: FAO-Food and Agriculture Organization of the United Nations, 1998.
[26] CANADELL, J., JACKSON, R. B., EHLERINGER, J. B., et al. Maximum rooting depth of vegetation types at the global scale. Oecologia, 1996, 108(4): 583-595.
https://doi.org/10.1007/BF00329030
[27] 福建省水利厅. 福建省水资源公报(2008-2013)[R]. 福州: 福建水利厅. Water Resources Department of Fujian Province. Fujian water resources bulletin (2008-2013). Fujian: Water Resources Department of Fujian Province. (in Chinese)
[28] 吴楠, 高吉喜, 苏德毕力格, 等. 生态系统供水发电服务评估及经济价值测算——以雅砻江二滩电站为例[J]. 水力发电学报, 2011, 30(4): 56-64. WU Nan, GAO Jixi, SUDEBILIGE, et al. Evaluation of ecosystem services for water supply and power generation and its economic value: A case study of Ertan hydropower on Yalongriver. Journal of Hydroelectric Engineering, 2011, 30(4): 56-64. (in Chinese)
[29] 福建省水利厅. 福建省水资源公报(2015)[R]. 福州: 福建水利厅. Water Resources Department of Fujian Province. Fujian water resources bulletin in 2015. Fujian: Water Resources Department of Fujian Province. (in Chinese)