冶金工程  >> Vol. 4 No. 2 (June 2017)

基于成本控制的转炉冷却工艺优化
Optimization of Converter Cooling Technology Based on Cost Control

DOI: 10.12677/MEng.2017.42015, PDF, HTML, XML, 下载: 757  浏览: 2,033 

作者: 杨敏:中国宝武钢铁集团有限公司,上海

关键词: 转炉成本控制冷却工艺优化设计Converter Cost Control Cooling Technology Optimization Design

摘要: 以物料平衡和热平衡为基础建立了转炉原料成本计算模型,并考察了冷却剂结构变化对转炉物料平衡和原料成本的影响作用规律。结果表明,降低废钢比、提高矿石比和石灰石比均可有效降低转炉原料成本,且矿石替代废钢的降本效果更为显著。综合考虑转炉冷却效果和吹炼过程的稳定性,确定了“先降低废钢比,依次用矿石和石灰石平衡转炉热量”的冷却工艺优化设计原则,并设定了废钢比下限和矿石比上限。工业试验和原料成本核算表明,冷却工艺优化后,转炉吹炼过程平稳,冶炼终点钢水温度和成分及终渣成分控制准确、稳定,且脱磷效果有所改善,转炉原料成本显著降低。
Abstract: A cost calculation model of converter raw materials was established based on converter material balance and heat balance, and the effect of the cooling agents on the cost of raw materials was in-vestigated. The results showed that it is beneficial to reduce the cost of raw materials through re-ducing scrap ratio, increasing ore ratio and limestone ratio, and the substitution of scrap with ore is more remarkable for cost reducing. Considering the cooling effect and the stability during blowing synthetically, the optimization principle of converter cooling was established, and it is that reducing scrap ratio firstly, then using ore and limestone to balance converter heat in sequence, and the inferior limit of the scrap ratio and the superior limit of the ore ratio were set. The results of industrial experiments and the cost accounting showed that the blowing process was stable, and the steel temperature of the blowing endpoint can be controlled accurately, and the chemical compositions of steel and slag of the blowing endpoint were stable. Furthermore, the dephosphorization effect was improved, and the raw materials cost of converter was reduced sig-nificantly.

文章引用: 杨敏. 基于成本控制的转炉冷却工艺优化[J]. 冶金工程, 2017, 4(2): 102-109. https://doi.org/10.12677/MEng.2017.42015

参考文献

[1] 范鼎东. 炼钢金属炉料的经济性研究[J]. 炼钢, 1999, 15(3): 46-49.
[2] 王勇, 杨宁川, 王承宽. 我国转炉炼钢的现状和发展[J]. 特殊钢, 2005, 26(4): 1-5.
[3] 袁章福. 转炉内铬矿的熔融还原及热力学讨论[J]. 铁合金, 1989(4): 10-17.
[4] Soykan, O., Eric, R.H. and King, R.P. (1991) Kinetics of the Reduction of Bushveld Complex Chromite Ore at 1416˚C, Metallurgical Transactions B, 22, 801-810.
https://doi.org/10.1007/BF02651157
[5] Kishimoto, Y., Taoka, K. and Takeuchi, S. (1997) Development of High-Efficiency Stainless Steel-Making by Cr Ore Smelting Reduction Method. Kawasaki Steel Technical Report, 37, 51-58.
[6] Liu, Y., Jiang, M.F., Xu, L.X., et al. (2012) A Coupling Dynamic Model for Dissolution and Reduction of Chromium Ore in a Smelting Reduction Converter. International Journal of Iron and Steel Research, 19, 5-10.
https://doi.org/10.1016/S1006-706X(12)60039-9
[7] 田志国, 汤伟, 潘锡泉. 转炉采用石灰石替代部分石灰冶炼的应用分析[J]. 中国冶金, 2012, 22(7): 47-51.
[8] 李宏, 曲英. 氧气转炉炼钢用石灰石代替石灰节能减排初探[J]. 中国冶金, 2010, 20(9): 45-47.
[9] 魏宝森. 石灰石在转炉炼钢中的应用[J]. 材料与冶金学报, 2012, 11(3): 157-159.
[10] 雷岩岩, 刘义文, 王冰, 等. 张钢120吨转炉应用烧结返矿工艺研究[C]//中国金属学会. 2012年全国炼钢连铸生产技术会论文集(上). 重庆: 中国金属学会, 2012.
[11] 吴杰, 王晓晶. 转炉炼钢过程中烧结返矿应用的生产实践[J]. 天津冶金, 2012(2): 4-16.
[12] 汪春雷, 赵和明. 转炉炉料结构调整计算和比较[C]//中国金属学会特钢分会. 特钢冶炼学术委员会2009年会论文集. 青岛: 中国金属学会特钢分会, 2009.