基于OFDM导频信号的测距测速方法
Novel Method of Range and Velocity Measurement Based on OFDM Pilot Signal
DOI: 10.12677/HJWC.2017.73013, PDF, HTML, XML, 下载: 1,961  浏览: 4,842  国家自然科学基金支持
作者: 叶 恒, 余小游, 慈能达, 孙鹏帅, 马和风, 林培英, 陈 星:湖南大学,信息科学与工程学院,湖南 长沙
关键词: 车载通信网络OFDM导频信号测距测速Vehicular Communication Networking OFDM Pilot Signal Range and Velocity Measurement
摘要: 实现车辆的距离和速度估计是车载通信与网络领域的重要方向,针对导频信号具有功率大、良好的无源探测性能等优点,本文在OFDM信号的基础上,提出了一种利用OFDM导频信号进行测距测速的方法。首先推导得到了OFDM导频信号接收信号频域矩阵,对其行、列向量频谱进行搜索,经过处理得到目标的距离和速度,然后通过仿真实验及性能分析,验证了OFDM导频信号能够满足车载通信网络中车辆测距测速要求。
Abstract: The estimation of range and velocity is an important direction of the vehicular communications and networking field. In view of the pilot signal with large power, and the advantages of good passive detection performance, this paper proposes a new velocity and range measuring method using OFDM pilot signal based on the OFDM signal. The OFDM pilot signals frequency domain matrix was derived firstly, the range and velocity of the target can be obtained through searching the frequency of the columns and row vector frequency of the matrix. And then through the simulation experiment and performance analysis we prove that this method can meet the requirements of range and velocity measurement in vehicular communication networking.
文章引用:叶恒, 余小游, 慈能达, 孙鹏帅, 马和风, 林培英, 陈星. 基于OFDM导频信号的测距测速方法[J]. 无线通信, 2017, 7(3): 103-110. https://doi.org/10.12677/HJWC.2017.73013

参考文献

[1] Garmatyuk, D., Schuerger, J., Morton, Y.T., et al. (2007) Feasibility Study of a Multi-Carrier Dual-Use Imaging Radar and Communication System. Proceedings of European Microwave Conference, Munich, 10-12 October 2007, 1473- 1476.
[2] Sen, S. and Nehorai, A. (2010) OFDM MIMO Radar with Mutual-Information Waveform Design for Low-Grazing Angle Tracking. IEEE Transactions on Signal Processing, 58, 3152-3162.
https://doi.org/10.1109/TSP.2010.2044834
[3] Garmatyuk, D. (2011) Adaptive Multicarrier OFDM SAR Signal Processing. IEEE Transactions on Geoscience and Remote Sensing, 49, 3780-3790.
https://doi.org/10.1109/TGRS.2011.2165546
[4] Berger, C.R. (2010) Signal Processing for Passive Radar Using OFDM Waveforms. IEEE Journal of Selected Topics in Signal Processing, 4, 226-238.
https://doi.org/10.1109/JSTSP.2009.2038977
[5] Tigrek, R.F. (2009) Multi-Carrier Radar Waveform Schemes for Range and Doppler Processing. Proceedings of IEEE Radar Conference, Pasadena, CA, 4-8 May 2009, 1-5.
[6] Garmatyuk, D. (2011) Multifunctional Software-Defined Radar Sensor and Data Communication System. IEEE Sensors Journal, 11, 99-106.
https://doi.org/10.1109/JSEN.2010.2052100
[7] Sturm, C. (2011) Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing. Proceedings of the IEEE, 99, 1236-1259.
https://doi.org/10.1109/JPROC.2011.2131110
[8] Braun, M., Sturm, C. and Jondral, F.K. (2011) On the Single-Target Accuracy of OFDM Radar Algorithms. Proceedings of IEEE 22nd International Symposium on PIMRC, Toronto, 11-14 September 2011, 794-798.
[9] Sit, Y.L., Nguyen, T.T. and Sturm, C. (2013) 2D Radar Imaging with Velocity Estimation Using a MIMO OFDM Based Radar for Automotive Applications. Proceedings of the 10th European Radar Conference, Nuremberg, 9-11 October 2013, 145-148.