金属溶液雾化器中气体流场的计算模拟与分析
Simulation and Analysis of Gas Flow Field in Metallic Solution Atomizer
DOI: 10.12677/IJFD.2017.52009, PDF, HTML, XML,  被引量 下载: 1,601  浏览: 4,195 
作者: 马依凡, 张召明:南京航空航天大学航空宇航学院,江苏 南京
关键词: 金属溶液雾化器射流数值模拟Metallic Solution Atomizer Jet Numerical Simulation
摘要: 本文基于一种旋涡环缝式雾化器,采用Catia建立实体模型,ICEM对模型进行网格划分,Fluent进行对气流流场的数值模拟计算,研究了气体流过雾化器内部的流动过程以及气流从雾化器环缝喷嘴喷出后的射流流场特性。研究发现气流在雾化器内部的流动存在漩涡,从雾化器环缝喷嘴喷出后,射流呈空心的对顶气锥形态,且存在一个旋度。沿喷射方向,射流流速逐渐减小,射流宽度增加。通过对雾化器流场的计算模拟分析,可以为改进该雾化器雾化性能提供依据。
Abstract: Based on a vertical loop slot atomizer, Catia was used to establish the solid model. The grid was di-vided by ICEM. Fluent was used to simulate the flow field. The flow field characteristics of the gas flowing through the atomizer and the characteristics of the jet spraying out from the atomization nozzle of the atomizer were studied. It was found that there were vortices in the flow inside the at-omizer. After ejecting from the atomizer nozzle, the jet appeared in the shape of a hollow double cone and there was a rotation. Along the ejecting direction, the flow rate of the jet decreased and the width of the jet increased. Through the calculation and analysis of the flow field of the atomi- zer, it provides the basis for improving the atomization performance of the atomizer.
文章引用:马依凡, 张召明. 金属溶液雾化器中气体流场的计算模拟与分析[J]. 流体动力学, 2017, 5(2): 76-82. https://doi.org/10.12677/IJFD.2017.52009

参考文献

[1] 刘文胜, 彭芬, 马运柱, 等. 气雾化法制备金属粉末的研究进展[J]. 材料导报, 2009, 23(3): 53-57.
[2] 王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.
[3] 于朝清, 徐永红, 章应, 等. 金属雾化制粉技术现状[J]. 电工材料, 2010(2): 9-12.
[4] 梁荣, 党新安, 赵小娟, 等. 微细金属粉末雾化喷嘴的设计进展[J]. 有色金属工程, 2008, 60(1): 36-40.
[5] 李清泉, 欧阳通, 麻润海, 等. 气雾化微细金属粉末的生产工艺研究[J]. 粉末冶金技术, 1996, 14(3): 181-188.
[6] 陈仕奇, 黄伯云. 金属粉末气体雾化制备技术的研究现状与进展[J]. 粉末冶金材料科学与工程, 2003, 22(3): 297-302.
[7] 刘福平. 旋涡环缝式雾化器设计参数的研究[J]. 粉末冶金技术, 2011, 29(5): 339-343.
[8] 刘福平, 杨凯珍, 刘凤美. 环孔雾化器出口气体射流结构参数的研究[J]. 粉末冶金技术, 2009, 27(4): 255-258.
[9] 李富成. 流体力学及流体机械[M]. 北京: 冶金工业出版社, 1980.
[10] Chen, S., Zhou, N. and Yin, Z. (1996) Fluid Kinetics Principle and Design Criteria of Atomizer. Transactions of Nonfer-rous Metals Society of China, 3, 108-112.
[11] 陈世柱. 气雾喷粉管路及喷嘴设计原则[J]. 轻金属, 1998(4): 56-59.
[12] 沈军, 蒋祖龄. 气体雾化过程的增压与吸动现象[J]. 粉末冶金技术, 1994(1): 15-17.
[13] Si, C.R., Zhang, X.J., Wang, J.B., et al. (2014) Design and Evaluation of a Laval-Type Supersonic Atomizer for Low- Pressure Gas Atomization of Molten Metals. International Journal of Minerals Metallurgy and Materials, 21, 627-635.
https://doi.org/10.1007/s12613-014-0951-4
[14] Chen, G., Yang, X., Bin, S.U., et al. (2014) Criterion of Gas and Solid Du-al-Phase Flow Atomization Crash in Molten Metal. The Chinese Journal of Nonferrous Metals, 24, 208-216.
[15] Yang, L., Yang, G. and Zhou, Y. (1995) Theoretical Discussion on Unsteady Flow of Fluid during Metal Atomization. Acta Metallurgica Sinica, 8, 65-71.