APP  >> Vol. 7 No. 6 (June 2017)

    Tuning the Supramolecular Coordination Self-Assembly on Au(111) Surface by Molecular Flexible Side Chains

  • 全文下载: PDF(1154KB) HTML   XML   PP.165-172   DOI: 10.12677/APP.2017.76023  
  • 下载量: 746  浏览量: 1,440  


宋 洋,王余旭,周 坤:苏州大学,软凝聚态物理及交叉研究中心,江苏 苏州

扫描隧道显微镜超分子自组装金属有机分子配位位阻Scanning Tunneling Microscope Supramolecular Self-Assembly Metal-Organic Coordination Steric Hindrance


在本文中,我们借助超高真空–扫描隧道显微镜(UHV-STM),研究了分子柔性侧链(flexible side chain)对金属表面超分子配位自组装的调控作用。有机分子L由带吡啶基(pyridyl(py))的咔唑骨架和一条十四烷基侧链构成。在预先沉积了Cu的Au(111)表面上,分子L可以通过py-Cu-py配位方式连接成链。STM研究显示,室温下有机分子L的十四烷基链由于自身热能而在衬底表面高速摆动。实验发现这种由侧链的摆动引起的空间位阻(steric hindrance)效应能够调控金属有机配位分子链的间距。本实验对于理解和利用柔性侧链在表面自组装结构中的调控作用具有重要的意义。

In this paper, we studied the effect of molecular flexible side chains on the supramolecular coor-dination self-assembly on metal surface, by using an ultra-high vacuum-scanning tunneling mi-croscope (UHV-STM). The organic molecule L is composed of a carbazole skeleton with two pyridyl group and a tetradecyl side chain. On the Au (111) surface with predeposited Cu atoms, the molecules L coordinate with Cu via the pyridyl terminals into chains, while. STM study shows that the tetradecyl side chain of the molecule L oscillates on the surface due to its thermal energy at room temperature. Analysis based on high-resolution images reveals that the steric hindrance caused by the side chain oscillation regulates the arrangement of the assembled metal-organic coordination chains. This experiment is of great significance for understanding and using the flexible side chains in the surface self-assembly structure.

宋洋, 王余旭, 周坤. 分子柔性侧链对Au(111)表面超分子配位自组装的调控[J]. 应用物理, 2017, 7(6): 165-172.


[1] Menon, A.K. and Gupta, B.K. (1999) Nanotechnology: A Data Storage Perspective. Nanostructured Materials, 11, 965-986.
[2] Farokhzad, O.C. and Langer, R. (2009) Impact of Nanotechnology on Drug Delivery. ACS Nano, 3, 16-20.
[3] Shi, J., Votruba, A.R., Farokhzad, O.C. and Langer, R. (2010) Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 10, 3223-3230.
[4] Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008) Science and Technology for Water Purification in the Coming Decades. Nature, 452, 301-310.
[5] Lehn, J.M. (1993) Supramolecular Chemistry. Science, 260, 1762-1763.
[6] Kühnle, A. (2009) Self-Assembly of Organic Molecules at Metal Surfaces. Current Opinion in Colloid & Interface Science, 14, 157-168.
[7] Yang, Y. and Wang, C. (2009) Solvent Effects on Two-Dimensional Molecular Self-Assemblies Investigated by Using Scanning Tunneling Microscopy. Current Opinion in Colloid & Interface Science, 14, 135-147.
[8] Dong, L., Gao, Z.A. and Lin, N. (2016) Self-Assembly of Metal-Organic Coordination Structures on Surfaces. Progress in Surface Science, 91, 101-135.
[9] Tait, S.L., Langner, A., Lin, N., Stepanow, S., Rajadurai, C., Ruben, M. and Kern, K. (2007) One-Dimensional Self- Assembled Molecular Chains on Cu(100):  Interplay between Surface-Assisted Coordination Chemistry and Substrate Commensurability. The Journal of Physical Chemistry C, 111, 10982-10987.
[10] Kühne, D., Klappenberger, F., Decker, R., Schlickum, U., Brune, H., Klyatskaya, S., Ruben, M. and Barth, J.V. (2009) High-Quality 2D Metal-Organic Coordination Network Providing Giant Cavities within Mesoscale Domains. Journal of the American Chemical Society, 131, 3881-3883.
[11] Urgel, J.I., Cirera, B., Wang, Y., Auwärter, W., Otero, R., Gallego, J.M., Alcamí, M., Klyatskaya, S., Ruben, M., Martín, F., Miranda, R., Ecija, D. and Barth, J.V. (2015) Surface-Supported Robust 2D Lan-thanide-Carboxylate Coordination Networks. Small, 11, 6358-6364.
[12] Sirtl, T., Schlögl, S., Rastgoo-Lahrood, A., Jelic, J., Neogi, S., Schmittel, M., Heckl, W.M., Reuter, K. and Lackinger, M. (2013) Control of Intermolecular Bonds by Deposition Rates at Room Temperature: Hydrogen Bonds versus Metal Coordination in Trinitrile Monolayers. Journal of the American Chemical Society, 135, 691-695.
[13] Sun, J., Yu, Y., Liu, C. and Lei, S. (2017) Surface- and Guest-Promoted Product Selection from a Dynamic Covalent Library: A Scanning Tunneling Microscopic Study. The Journal of Physical Chemistry C, 121, 3437-3444.
[14] Shen, Y., Tian, G., Huang, H., He, Y., Xie, Q., Song, F., Lu, Y., Wang, P. and Gao, Y. (2017) Chiral Self-Assembly of Nonplanar 10,10’-Dibromo-9,9’-Bianthryl Molecules on Ag(111). Langmuir, 33, 2993-2999.
[15] Cun, H., Wang, Y., Du, S., Zhang, L., Zhang, L., Yang, B., He, X., Wang, Y., Zhu, X., Yuan, Q., Zhao, Y.-P., Ouyang, M., Hofer, W.A., Pennycook, S.J. and Gao, H.-J. (2012) Tuning Structural and Mechanical Properties of Two-Dimen- sional Molecular Crystals: The Roles of Carbon Side Chains. Nano Letters, 12, 1229-1234.
[16] Adisoejoso, J., Li, Y., Liu, J., Liu, P.N. and Lin, N. (2012) Two-Dimensional Metal-lo-Supra molecular Polymerization: Toward Size-Controlled Multi-Strand Polymers. Journal of the American Chemical Society, 134, 18526-18529.
[17] Shi, Z., Liu, J., Lin, T., Xia, F., Liu, P.N. and Lin, N. (2011) Thermodynamics and Selectivity of Two-Dimensional Metallo-Supramolecular Self-Assembly Resolved at Molecular Scale. Journal of the American Chemical Society, 133, 6150-6153.
[18] Fan, Q., Wang, C., Han, Y., Zhu, J., Kuttner, J., Hilt, G. and Gottfried, J.M. (2014) Surface-Assisted Formation, Assembly, and Dynamics of Planar Organometallic Macrocycles and Zigzag Shaped Polymer Chains with C-Cu-C Bonds. ACS Nano, 8, 709-718.
[19] Han, P., Akagi, K., Federici Canova, F., Shimizu, R., Oguchi, H., Shiraki, S., Weiss, P.S., Asao, N. and Hitosugi, T. (2015) Self-Assembly Strategy for Fabricating Connected Graphene Nanoribbons. ACS Nano, 9, 12035-12044.
[20] Kong, X.-H., Deng, K., Yang, Y.-L., Zeng, Q.-D. and Wang, C. (2007) Effect of Thermal Annealing on Hydrogen Bond Configurations of Host Lattice Revealed in VOPc/TCDB Host-Guest Architectures. The Journal of Physical Chemistry C, 111, 9235-9239.
[21] Hauptmann, N., Scheil, K., Gopakumar, T.G., Otte, F.L., Schütt, C., Herges, R. and Berndt, R. (2013) Surface Control of Alkyl Chain Conformations and 2D Chiral Amplification. Journal of the American Chemical Society, 135, 8814- 8817.