不同排屑条件对叠层构件螺旋铣孔质量及刀具磨损的影响
Influence of Different Chip Removal Conditions on Hole-Making Quality and Tool Wear in Helical Milling of CFRP/Ti Stacks
DOI: 10.12677/MET.2017.62020, PDF, HTML, XML, 下载: 1,482  浏览: 3,524  国家自然科学基金支持
作者: 李士鹏*, 武卫洲, 刘亚军, 秦旭达:天津大学机构理论与装备设计教育部重点实验室,天津
关键词: 螺旋铣孔排屑CFRP钛合金制孔质量Helical Milling Chip Removal CFRP Titanium Alloy Hole-Making Quality
摘要: 现代飞机装配过程中,有大量碳纤维增强复合材料/钛合金(CFRP/Ti)叠层构件的制孔需求,复合材料及钛合金的难加工性使得叠层构件制孔成为影响飞机装配周期和装配质量的重要因素。螺旋铣孔技术因其较小的轴向力、较好的散热性和排屑性得到广泛关注。但基于孔加工过程封闭的切削环境,螺旋铣孔还是无法避免加工过程孔内残留切屑问题。针对以上问题,本文通过竖直螺旋铣孔实验,对比研究了自然排屑和使用集屑装置时孔壁粗糙度、孔径精度、孔出入口缺陷以及刀具磨损等。结果显示,集屑装置可避免切屑在孔口的堆积,进而减少向孔内返屑现象,从而有效降低因碳纤维和钛合金切屑导致的刀具磨损,提高孔径精度,减少孔出口缺陷。
Abstract: There are a large number of holes to be machined on carbon fiber reinforced plastic/titanium alloy (CFRP/Ti) stacks in modern aircraft assembling. Due to the hard machinability of CFRP and titanium, hole-making process on the stacks becomes an important factor affecting assemble time and quality. Helical milling has attracted much attention for its low axial force, good heat dissipation and smooth chip removal. However, the problem of residual chips in the hole during helical milling process still arises because of the relatively closed machining environment. In this paper, hole side wall roughness, hole diameter, defect on hole exit and tool wear produced with and without a chip collector were investigated comparatively. Results show that the chip collector can promote chip removal and eliminate the chip accumulation around the hole entrance. Consequently, the chip return phenomenon was lessened, tool wear was decreased and hole quality improved.
文章引用:李士鹏, 武卫洲, 刘亚军, 秦旭达. 不同排屑条件对叠层构件螺旋铣孔质量及刀具磨损的影响[J]. 机械工程与技术, 2017, 6(2): 140-150. https://doi.org/10.12677/MET.2017.62020

参考文献

[1] 陈绍杰. 论我国先进复合材料产事业的发展[J]. 高科技纤维与应用, 2013, 38(1): 1-11.
[2] Singh, A.P., Sharma, M. and Singh, I. (2013) A Review of Modeling and Control during Drilling of Fiber Reinforced Plastic Composites. Composites Part B: Engineering, 47, 118-125.
https://doi.org/10.1016/j.compositesb.2012.10.038
[3] 齐振超, 刘书暖, 程晖, 等. 基于三维多相有限元的CFRP细观切削机理研究[J]. 机械工程学报, 2016, 52(15): 170-176.
[4] 田勇. 碳纤维复合材料钻孔缺陷研究与刀具优化设计[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2015.
[5] Brinksmeier, E., Fangmann, S. and Walter, A. (2007) High Speed Machining of Multilayer Composite Materials by Orbital Drilling. Sixth International Conference of High Speed Machining, San Sebastian, 21-22 March 2007.
[6] Iyer, R., Koshy, P. and Ng, E. (2007) Helical Milling: An Enabling Technology for Hard Machining Precision Holes in AISI D2 Tool Steel. International Journal of Machine Tools and Manufacture, 47, 205-210.
https://doi.org/10.1016/j.ijmachtools.2006.04.006
[7] Denkena, B., Boehnke, D. and Dege, J.H. (2008) Helical Milling of CFRP-Titanium Layer Compounds. CIRP Journal of Manufacturing Science and Technology, 1, 64-69.
https://doi.org/10.1016/j.cirpj.2008.09.009
[8] Ni, W. (2007) Orbital Drilling of Aerospace Materials. SAE Technical Paper, 1, 3814-3822.
https://doi.org/10.4271/2007-01-3814
[9] Wang, H. and Qin, X. (2015) A Mechanistic Model for Cutting Force in Helical Milling of Carbon Fiber-Reinforced Polymers. The International Journal of Advanced Manufacturing Technology, 82, 1485-1494.
[10] 南成根, 吴丹, 马信国, 等. CFRP/Al叠层钻孔粉状切屑对加工质量的影响[J]. 清华大学学报(自然科学版), 2015(3): 279-284.
[11] 张松鹏, 复合材料TJB构件数控制孔及偏差补偿技术研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2012.
[12] 王欢. 钛合金螺旋铣孔试验研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2015.
[13] He, G., Li, H., Jiang, Y., et al. (2015) Helical Milling of CFRP/Ti-6Al-4V Stacks with Varying Machining Parameters. Transactions of Tianjin University, 21, 56-63.
[14] 魏威, 韦红金. 碳纤维复合材料高质量制孔工艺[J]. 南京航空航天大学学报, 2009, 41(S1): 115-118.