白血病诱导分化剂的研究进展
Research Progress of Leukemia Induced Differentiation Agents
DOI: 10.12677/WJCR.2017.73012, PDF, HTML, XML, 下载: 1,829  浏览: 3,810  科研立项经费支持
作者: 江 伟, 邓 鑫, 李海英, 黄卫国*:南华大学肿瘤研究所,湖南 衡阳
关键词: 白血病诱导分化诱导分化剂Leukemia Differentiation Differentiation Induced Agent
摘要: 诱导分化具有选择性高、副作用小、疗效好等优点。诱导分化机制的研究的深入推动着诱导分化治疗白血病的研究和发展,使其有望成为将来治疗白血病的主要手段。近年来,急性早幼粒细胞白血病的诱导分化治疗已成为目前血液学研究的热点之一,并且国内外对白血病的诱导分化治疗的研究取得了一定的成果。本文对近年来白血病诱导分化的新型诱导分化剂,如:维甲酸类、砷剂、中药类、分子靶向治疗药物类、去甲基化药物类、组蛋白酶去乙酰化药物、miRNA类等的使用与分子机制进行了总结,有利于了解诱导分化剂的研究新进展。
Abstract: Differentiation has the advantages such as highly-selective, low side effect and good curative effect. The further study of differentiation mechanism propels the study and development of treating leukemia by differentiation, and makes it the main method of treating leukemia in the future. In recent years, the differentiation therapy of acute promyelocytic leukemia has become one of the hot points of hematology research, and there has achieved some degree of success in the differentiation therapy of leukemia at home and abroad. This paper summarizes the commonly used and molecular mechanism of differentiation induced agents in recent years, such as, dimension of formic acid, arsenic, traditional Chinese medicine, molecular target drugs, demethylating drugs, acetylating drugs and miRNAs. It is helpful to understand the new progress of differentiation.
文章引用:江伟, 邓鑫, 李海英, 黄卫国. 白血病诱导分化剂的研究进展[J]. 世界肿瘤研究, 2017, 7(3): 75-80. https://doi.org/10.12677/WJCR.2017.73012

参考文献

[1] Chen, S.H. (2015) Asparaginase Therapy in Pediatric Acute Lymphoblastic Leukemia: A Focus on the Mode of Drug Resistance. Pediatrics & Neonatology, 56, 287.
https://doi.org/10.1016/j.pedneo.2014.10.006
[2] Hegyi, B., Komaromi, I., Nanasi, P.P., et al. (2013) Selectivity Problems with Drugs Acting on Cardiac Na(+) and Ca(2)(+) Channels. Current Medicinal Chemistry, 20, 2552-2571.
https://doi.org/10.2174/09298673113209990123
[3] Etxabe, A., Lara-Castillo, M.C., Cornet-Masana, J.M., et al. (2017) Inhibition of Serotonin Receptor Type 1 in Acute Myeloid Leukemia Impairs Leukemia Stem Cell Functionality: A Promising Novel Therapeutic Target. Leukemia.
https://doi.org/10.1038/leu.2017.52
[4] Guo, J., Russell, E.G., Darcy, R., et al. (2017) Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, in Vitro Mechanistic Studies, and ex Vivo Patient Derived Therapeutic Efficacy. Molecular Pharmacology, 14, 940-952.
https://doi.org/10.1021/acs.molpharmaceut.6b01150
[5] Zhu, G. (2013) Novel Treatment of Acute Promyelocytic Leukemia: As(2)O(3), Retinoic Acid and Retinoid Pharmacology. Current Pharmaceutical Biotechnology, 14, 849-858.
https://doi.org/10.2174/1389201015666140113095812
[6] Mi, J.Q., Li, J.M., Shen, Z.X., et al. (2012) How to Manage Acute Promyelocytic Leukemia. Leukemia, 26, 1743-1751.
https://doi.org/10.1038/leu.2012.57
[7] Abla, O. and Ribeiro, R.C. (2014) How I Treat Children and Adolescents with Acute Promyelocytic Leukaemia. British Journal of Haematology, 164, 24-38.
https://doi.org/10.1111/bjh.12584
[8] Fredly, H., Ersvaer, E., Kittang, A.O., et al. (2013) The Combination of Valproic Acid, All-Trans Retinoic Acid and Low-Dose Cytarabine as Disease-Stabilizing Treatment in Acute Myeloid Leukemia. Clinical Epigenetics, 5, 13.
https://doi.org/10.1186/1868-7083-5-13
[9] Lo-Coco, F. and Hasan, S.K. (2014) Understanding the Molecular Pathogenesis of Acute Promyelocytic Leukemia. Best Practice & Research Clinical Haematology, 27, 3-9.
https://doi.org/10.1016/j.beha.2014.04.006
[10] Yanada, M., Tsuzuki, M., Fujita, H., et al. (2013) Phase 2 Study of Arsenic Trioxide Followed by Autologous Hematopoietic Cell Transplantation for Relapsed Acute Promyelocytic Leukemia. Blood, 121, 3095-3102.
https://doi.org/10.1182/blood-2012-11-466862
[11] Rehman, K. and Naranmandura, H. (2013) Double-Edged Effects of Arsenic Compounds: Anticancer and Carcinogenic Effects. Current Drug Metabolism, 14, 1029-1041.
[12] Wilcox, D.E. (2013) Arsenic. Can This Toxic Metalloid Sustain Life? Metal Ions in Life Sciences, 13, 475-498.
https://doi.org/10.1007/978-94-007-7500-8_15
[13] Jeong, Y.M., Oh, W.K., Tran, T.L., et al. (2013) Aglycone of Rh4 Inhibits Melanin Synthesis in B16 Melanoma Cells: Possible Involvement of the Protein Kinase a Pathway. Bioscience, Biotechnology, and Biochemistry, 77, 119-125.
https://doi.org/10.1271/bbb.120602
[14] Liu, Y., Xu, Y., Ji, W., et al. (2014) Anti-Tumor Activities of Matrine and Oxymatrine: Literature Review. Tumor Biology, 35, 5111-5119.
https://doi.org/10.1007/s13277-014-1680-z
[15] Fan, J.M., Liu, Z.H., Li, J., et al. (2013) Effect of Ginseng Polysaccharide-Induced Wnt/Beta-Catenin Signal Transduction Pathway on Apoptosis of Human Nasopharyngeal Cancer Cells CNE-2. Zhongguo Zhong Yao Za Zhi, 38, 3332-3327.
[16] Zhang, S., Zhang, Y., Zhuang, Y., et al. (2012) Matrine Induces Apoptosis in Human Acute Myeloid Leukemia Cells via the Mitochondrial Pathway and Akt Inactivation. PLoS One, 7, Article ID: e46853.
https://doi.org/10.1371/journal.pone.0046853
[17] Wu, D., Shao, K., Sun, J., et al. (2014) Matrine Cooperates with All-Trans Retinoic Acid on Differentiation Induction of All-Trans Retinoic Acid-Resistant Acute Promyelocytic Leukemia Cells (NB4-LR1): Possible Mechanisms. Planta Medica, 80, 399-408.
https://doi.org/10.1055/s-0034-1368183
[18] Wild, J., Schmiedel, B.J., Maurer, A., et al. (2015) Neutralization of NK Cell-Derived B Cell Activating Factor by Belimumab Restores Sensitivity of Chronic Lymphoid Leukemia Cells to Direct and Rituximab-Induced NK Lysis. Leukemia, 29, 1676.
https://doi.org/10.1038/leu.2015.50
[19] Jain, P., Lee, H.J., Qiao, W., et al. (2014) FCR and Bevacizumab Treatment in Patients with Relapsed Chronic Lymphocytic Leukemia. Cancer, 120, 3494-3501.
https://doi.org/10.1002/cncr.28910
[20] Tarlock, K., Chang, B., Cooper, T., et al. (2015) Sorafenib Treatment Following Hematopoietic Stem Cell Transplant in Pediatric FLT3/ITD Acute Myeloid Leukemia. Pediatr Blood Cancer, 62, 1048.
https://doi.org/10.1002/pbc.25437
[21] Bhatia, A., Kanish, B. and Chaudhary, P. (2015) Lichenoid Drug Eruption due to Imatinib Mesylate. International Journal of Applied and Basic Medical Research, 5, 68-69.
https://doi.org/10.4103/2229-516X.149253
[22] Xiang, D., Shigdar, S., Qiao, G., et al. (2015) Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: The Next Generation of Cancer Medicine. Theranostics, 5, 23-42.
https://doi.org/10.7150/thno.10202
[23] Kim, M. and Costello, J. (2017) DNA Methylation: An Epigenetic Mark of Cellular Memory. Experimental and Molecular Medicine, 49, Article ID: e322.
https://doi.org/10.1038/emm.2017.10
[24] Amabile, G., Di, R.A., Müller, F., et al. (2015) Dissecting the Role of Aberrant DNA Methylation in Human Leukaemia. Nature Communications, 6, 7091.
https://doi.org/10.1038/ncomms8091
[25] Momparler, R.L., Côté, S., Momparler, L.F., et al. (2017) Inhibition of DNA and Histone Methylation by 5-Aza-2'- Deoxycytidine (Decitabine) and 3-Deazaneplanocin-A on Antineoplastic Action and Gene Expression in Myeloid Leukemic Cells. Frontiers in Oncology, 7, 19.
https://doi.org/10.3389/fonc.2017.00019
[26] Gatla, H.R., Zou, Y., Uddin, M.M., et al. (2017) Histone Deacetylase (HDAC) Inhibition Induces IκB Kinase (IKK)-Dependent Interleukin-8/CXCL8 Expression in Ovarian Cancer Cells. Journal of Biological Chemistry, 292, 5043-5054.
https://doi.org/10.1074/jbc.M116.771014
[27] D'Amato, L., Dell'Aversana, C., Conte, M., et al. (2015) ARHGEF3 Controls HDACi-Induced Differentiation via RhoA-Dependent Pathways in Acute Myeloid Leukemias. Epigenetics, 10, 6-18.
https://doi.org/10.4161/15592294.2014.988035
[28] Mummaneni, P. and Shord, S.S. (2014) Epigenetics and Oncology. Pharmacotherapy, 34, 495-505.
https://doi.org/10.1002/phar.1408
[29] Li, C., Tao, Y., Li, C., et al. (2016) PU.1-Bim Axis Is Involved in Trichostatin A-Induced Apoptosis in Murine Pro-B Lymphoma FL5.12 Cells. Acta Biochimica et Biophysica Sinica (Shanghai), 48, 850-855.
https://doi.org/10.1093/abbs/gmw067
[30] Zhang, X., Ni, Z., Duan, Z., et al. (2015) Overexpression of E2F MRNAs Asso-ciated with Gastric Cancer Progression Identified by the Transcription Factor and MiRNA Co-Regulatory Network Analysis. PLoS One, 10, Article ID: e0116979.
https://doi.org/10.1371/journal.pone.0116979
[31] Brauer-Hartmann, D., Hartmann, J.U., Wurm, A.A., et al. (2015) PML/RARα-Regulated MiR-181a/b Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia. Cancer Research, 75, 3411-3424.
https://doi.org/10.1158/0008-5472.CAN-14-3521
[32] McCulloch, D., Brown, C. and Iland, H. (2017) Retinoic Acid and Arsenic Trioxide in the Treatment of Acute Promyelocytic Leukemia: Current Perspectives. Oncotargets and Therapy, 10, 1585-1601.
https://doi.org/10.2147/OTT.S100513
[33] Atashrazm, F., Lowenthal, R.M., Dickinson, J.L., et al. (2016) Fucoidan Enhances the Therapeutic Potential of Arsenic Trioxide and All-Trans Retinoic Acid in Acute Promyelocytic Leukemia, in Vitro and in Vivo. Oncotarget, 7, 46028- 46041.