APF  >> Vol. 7 No. 2 (June 2017)

    微粒沉积导致孔喉尺寸变化的Lattice Boltz-Mann模拟研究
    LBM Simulation of Pore-Throat Radius Variation Due to Particle Deposition

  • 全文下载: PDF(1125KB) HTML   XML   PP.13-20   DOI: 10.12677/APF.2017.72002  
  • 下载量: 674  浏览量: 1,489   国家科技经费支持

作者:  

韩晓冬:中海石油(中国)有限公司天津分公司,天津

关键词:
多孔介质微粒沉积LBM毛管模型孔喉有效半径Porous Media Particle Deposition LBM Capillary Model Effective Radius

摘要:

油气田开发过程中,微粒在孔喉内的沉积会导致孔喉有效尺寸减小,流体流动能力降低。为研究微粒沉积对孔喉尺寸的影响及孔喉尺寸变化规律,以毛管模型为基础,通过理论推导和LBM模拟结合的方法对微粒沉积后孔喉有效半径进行求解,并选取不同参数进行了敏感性分析。模拟结果显示,随微粒粒径的增大,孔喉有效半径减小,且微粒越大有效半径减小越快;微粒沉积位置越靠近入口端,孔喉有效半径越小;孔喉长度与宽度比值越大时,孔喉有效半径值越大。最后通过回归建立了微粒沉积后孔喉有效半径的计算数学模型,可对从微观尺度研究微粒沉积导致储层伤害起到一定的指导作用。

During the developing process of oil and gas reservoirs, particles deposited in pore-throats may result in the decrease of its effective radius and capability for fluid flowing through. For studying the influence of deposited particles on the pore-throat radius and its changing rule, the formula for calculating the effective radius is obtained based on the capillary model and theoretical deri-vation. Besides, sensitive analysis is conducted for various parameters. The simulation results show that, the effective radius of pore-throats gets smaller with the increase of deposited particle radius and the decreasing rate is higher at the bigger particle size; the closer the particle deposits from the inlet face, the smaller of the effective radius is; besides, the effective radius of the pore- throat will be much greater when the pore-throat has a bigger ratio value between the length and its width. In addition, a mathematical model for calculating the effective radius is proposed based on the regression fitting, which may provide a useful guidance for research on the formation damage.

文章引用:
韩晓冬. 微粒沉积导致孔喉尺寸变化的Lattice Boltz-Mann模拟研究[J]. 渗流力学进展, 2017, 7(2): 13-20. https://doi.org/10.12677/APF.2017.72002

参考文献

[1] 冯其红, 韩晓冬, 王守磊, 等. 注入水中悬浮微粒导致储层伤害网络模拟研究[J]. 西南石油大学学报: 自然科学版, 2014, 36(3): 179-184.
[2] 苏崇华. 疏松砂岩油田生产过程中储层伤害机理研究[J]. 中国海上油气, 2009, 21(1): 31-34.
[3] 刘义坤, 冯树义, 刘云龙, 等. 卫星油田储层敏感性分析[J]. 大庆石油学院学报, 2007, 31(5): 51-54.
[4] 胡雪滨, 徐永高. 油田注入水引起储层伤害的试验评价[J]. 江汉石油学院学报, 2002, 24(3): 53-55.
[5] Khlar, K.C. and Fogler, H.S. (1983) Water Sensitivity of Sandtones. SPEJ, 23, 55-64.
https://doi.org/10.2118/10103-PA
[6] Rege, S.D. and Fogler, H.S. (1987) Network Model for Straining Dominated Particle Entrapment in Porous Media. Chemical Engineering Science, 42, 1553-1564.
https://doi.org/10.1016/0009-2509(87)80160-4
[7] Jalel, O. and Jean-Francois, V. (1999) A Two-Dimensional Network Model to Simulate Permeability Decrease Under Hydrodynamic Effect of Particle Release and Capture. Transport in Porous Media, 37, 303-325.
https://doi.org/10.1023/A:1006690700000
[8] 秦积舜, 李爱芬. 油层物理学[M]. 东营: 中国石油大学出版社, 2006.
[9] 刘忠玉, 乐金朝, 苗天德. 无粘性土中管涌的毛管模型及其应用[J]. 岩石力学与工程学报, 2004, 23(22): 3871-3876.
[10] 张浩龙, 陶实, 郭照立. 振动纤维补集颗粒的格子Boltzmann模拟[J]. 计算物理, 2016, 33(3): 311-320.
[11] 姚军, 赵建林, 张敏, 等. 基于格子Boltzmann方法的页岩气微观流动模拟[J]. 石油学报, 2015, 36(10): 1280- 1289.
[12] 朱益华, 陶果, 方伟. 基于格子Boltzmann方法的储层岩石油水两相分离数值模拟[J]. 中国石油大学学报(自然科学版), 2010, 34(3): 48-52.
[13] 赵金洲, 符东宇, 李永明, 等. 基于格子Boltzmann方法的页岩气藏气体滑脱效应分析[J]. 油气地质与采收率, 2016, 23(5): 65-70.
[14] 袁迎中, 张烈辉, 何磊, 等. 注采比多远回归分析及合理注采比的确定[J]. 石油天然气学报, 2008, 30(1): 229- 302.
[15] Choo, C.-U. and Tien, C. (1995) Simulation of Hydrosol Deposition in Granular Media. A.I.Ch.E. Journal, 41, 1426- 1442.
https://doi.org/10.1002/aic.690410609
[16] Gao, C.H. (2008) Understanding Capture of Non-Brownian Particles in Porous Media with Network Model. Asia-Pacific Journal of Chemical Engineering, 3, 298-306.
https://doi.org/10.1002/apj.149