生物过程  >> Vol. 7 No. 2 (June 2017)

转基因毛状根组织在植物修复研究中的应用进展
Application Progress of Hairy Roots for Phytoremediation

DOI: 10.12677/BP.2017.72004, PDF, HTML, XML, 下载: 1,012  浏览: 2,541  科研立项经费支持

作者: 卢倩云, 曹宇棽, 陈友明, 晏琼*:北京交通大学理学院生命科学与生物工程研究院,北京

关键词: 毛状根植物修复重金属污染物有机污染物Hairy Root Phytoremediation Heavy Metals Pollutants Organic Pollutants

摘要: 毛状根组织是由农杆菌转化植物外植体获得的转基因组织,具有培养简单、生长速度较快、遗传性状和表型特征稳定等优点。近年来毛状根组织在植物修复技术中的应用研究引起了研究者的关注,毛状根组织被作为根的模式体系越来越多地应用于重金属和有机污染物的植物修复技术研究中,已日益成为植物修复技术研究中的一种便捷的实验室研究工具。本文综述了毛状根组织在植物修复中的应用研究进展,包括农业领域重金属污染物的富集,工业领域酚醛、染料和PCBs污染物的去除,军事领域TNT和放射性核素污染物的降解,医药领域抗生素污染物的消除等,并对毛状根组织在植物修复技术研究中的应用前景进行了展望。
Abstract: Hairy root tissue is a kind of genetically modified (gm) tissue that is obtained by agrobacterium transforming the explant of plants, having the traits of simple cultivating, fast growing, stable genetic and phenotypic characteristics, etc. Recent years the application of hairy root tissue in phytoremediation technology has caused the attention and the hairy root tissue as the model of root system has been increasingly used in the study of the phytoremediation of heavy metals and organic pollutants. Results indicate that hairy root tissue gradually becomes a convenient laboratory research tool in the study of phytoremediation technology. The application and research progress of hairy root tissue in the phytoremediation was reviewed in this paper, including enrichment of heavy metals pollutants in agriculture field; elimination of phenolic, dye, and PCBs pollutants in industry field; degradation of TNT and radionuclide pollutants in military field; remove of antibiotics pollutants in medical field, etc. And the prospects of hairy root tissue used in the phytoremediation research were also discussed.

文章引用: 卢倩云, 曹宇棽, 陈友明, 晏琼. 转基因毛状根组织在植物修复研究中的应用进展[J]. 生物过程, 2017, 7(2): 19-30. https://doi.org/10.12677/BP.2017.72004

参考文献

[1] Riker, A.J., Banfield, W.M., Wright, W.H., et al. (1930) Studies on Infectious Hairy Root of Nursery Apple Trees. Journal of Agricultural Research, 41, 507-540.
[2] Chaney, R.L., Nalik, M., Li, Y.M., et al. (1997) Phytoremediation of Soil Metals. Current Opinion in Biotechnology, 8, 279-284.
https://doi.org/10.1016/S0958-1669(97)80004-3
[3] 陈小慧, 何威明, 王睿, 等. 3种污染土壤植物修复技术研究进展[J]. 中国农技推广, 2016, 32(2): 43-47.
[4] 王松良, 郑金贵. 土壤重金属污染的植物修复与金属超富集植物及其遗传工程研究[J]. 中国生态农业学报, 2007, 15(1): 190-194.
[5] 解兴春. 砷超富集植物蜈蚣草产后处理与处置[D]: [硕士学位论文]. 昆明: 昆明理工大学, 2014.
[6] Agostini, E., Coniglio, M.S., Milrad, S.R., et al. (2003) Phytoremediation of 2,4-Dichlorophenol by Brassica napus Hairy Root Cultures. Biotechnology and Applied Biochemistry, 37, 139-144.
https://doi.org/10.1042/BA20020079
[7] Bhadra, R., Wayment, D.G., Williams, R.K., et al. (2001) Studies on Plant-Mediated Fate of the Explosives RDX and HMX. Chemosphere, 44, 1259-1264.
https://doi.org/10.1016/S0045-6535(00)00272-1
[8] Wevar, O.A.L., Agostini, E., Talano, M.A., et al. (2005) Overexpression of a Basic Peroxidase in Transgenic Tomato (Lycopersicon esculentum Mill. cv. Pera) Hairy Roots Increases Phytoremediation of Phenol. Plant Science, 169, 1102- 1111.
https://doi.org/10.1016/j.plantsci.2005.07.007
[9] Singh, S., Melo, J.S., Eapen, S. And D’Souza, S.F. (2006) Phenol Removal Using Brassica juncea Hairy Roots: Role of Inherent Peroxidase and H2O2. Journal of Biotechnology, 123, 43-49.
https://doi.org/10.1016/j.jbiotec.2005.10.023
[10] Gujarathi, N.P. and Linden, J.C. (2005) Oxytetracycline Inactivation by Putative Reactive Oxygen Species Released to Nutrient Medium of Helianthus annuus Hairy Root Cultures. Biotechnology and Bioengineering, 92, 393-402.
https://doi.org/10.1002/bit.20698
[11] Gujarathi, N.P., Haney, B.J., Park, H.J., et al. (2005) Hairy Roots of Helianthus annuus: A Model System to Study Phytoremediation of Tetracycline and Oxytetracycline. Biotechnology and Bioengineering, 21, 775-780.
https://doi.org/10.1021/bp0496225
[12] Banerjee, S., Shang, T.Q., Wilson, A.M., et al. (2002) Expression of Functional Mammalian P450 2E1 in Hairy Root Cultures. Biotechnology and Bioengineering, 77, 462-466.
https://doi.org/10.1002/bit.10151
[13] 刘静轶, 王晓轩, 胡红刚, 等. 植物组织在重金属污染环境修复中的应用研究进展[J]. 环境科学与技术, 2014, 37(3): 93-99.
[14] Doran, P.M. (2009) Application of Plant Tissue Cultures in Phytoremediation Research: Incentives and Limitations. Biotechnology and Bioengineering, 103, 60-76.
https://doi.org/10.1002/bit.22280
[15] 施和平, 曾宝强, 王云灵, 等. 镉及其与钙组合对褐脉少花龙葵毛状根生长、抗氧化酶活性和吸收镉的影响[J]. 生物工程学报, 2010, 26(2): 147-158.
[16] 张艳. 重金属镉对黄瓜毛状根生长的影响及其与锌的关系[D]: [硕士学位论文]. 广州: 华南师范大学, 2007.
[17] 张艳, 施和平, 曾宝强. 重金属镉及其与锌组合对黄瓜毛状根生长及其抗氧化酶活性的影响[J]. 生物工程学报, 2009, 25(1): 60-68.
[18] 谌金吾, 孙一铭, 王凤英, 等. 三叶鬼针草毛状根的诱导及其对重金属Cd、Pb蓄积[J]. 环境科学学报, 2015, 35(5): 1596-1602.
[19] 李晓丽. 重金属镉超富集植物油菜毛状根转基因诱导[J]. 北京农业, 2015(12): 20-21.
[20] 王凤英. 镉对白花曼陀罗再生植株和毛状根生长及吸收镉的影响[D]: [硕士学位论文]. 重庆: 西南大学, 2014.
[21] Wu, S., Zu, Y. and Wu, M. (2001) Cadmium Response of the Hairy Root Culture of the Endangered Species Adenophora lobophylla. Plant Science, 160, 551-562.
https://doi.org/10.1016/S0168-9452(00)00429-5
[22] Boominathan, R. and Doran, P.M. (2003) Organic Acid Complexation, Heavy Metal Distribution and the Effect of ATPase Inhibition in Hairy Roots of Hyperaccumulator Plant Species. Journal of Biotechnology, 101, 131-146.
https://doi.org/10.1016/S0168-1656(02)00320-6
[23] Eapen, S., Suseelan, K.N., Tivarekar, S., et al. (2003) Potential for Rhizofiltration of Uranium Using Hairy Root Cultures of Brassica juncea and Chenopodium amaranticolor. Environmental Research, 91, 127-133.
https://doi.org/10.1016/S0013-9351(02)00018-X
[24] Morita, M., Yamazaki, T., Kamiya, T., et al. (2001) Method of Decontaminating Medium Containing Polychlorinated Biphenyls or Dioxins. US Patent, US20016303844.
[25] Bhadra, R., Wayment, D.G., Hughes, J.B. and Shanks, J.V. (1999) Confirmation of Conjugation Processes during TNT Metabolism by Axenic Plant Roots. Environmental Science & Technology, 33, 446-452.
https://doi.org/10.1021/es980635m
[26] Gonzalez, P.S., Agostini, E. and Milrad, S.R. (2008) Comparison of the Removal of 2,4-Dichlorophenol and Phenol from Polluted Water, by Peroxidases from Tomato Hairy Roots, and Protective Effect of Polyethylene Glycol. Chemosphere, 70, 982-989.
https://doi.org/10.1016/j.chemosphere.2007.08.025
[27] Ibanez, S.G., Medina, M.I. and Agostini, E. (2011) Phenol Tolerance, Changes of Antioxidative Enzymes and Cellular Damage in Transgenic Tobacco Hairy Roots Colonized by Arbuscular Mycorrhizal Fungi. Chemosphere, 83, 700-705.
https://doi.org/10.1016/j.chemosphere.2011.02.021
[28] Santos, D.A.B., Dec, J., Bollag, J.M., et al. (2006) Uptake and Transformation of Phenol and Chlorophenols by Hairy Root Cultures of Daucus carota, Ipomoea batatas and Solanum aviculare. Chemosphere, 63, 642-651.
https://doi.org/10.1016/j.chemosphere.2005.08.005
[29] Santos, D.A.B., Omena, D.O.J., Salgueiro, M.S., et al. (2004) Comparative Studies of the Peroxidases from Hairy Roots of Daucus carota, Ipomea batatas and Solanum aviculare. Plant Science, 167, 1151-1157.
https://doi.org/10.1016/j.plantsci.2004.06.015
[30] Patil, P., Desai, N., Govindwar, S., Jadhav, J.P., et al. (2009) Degradation Analysis of Reactive Red 198 by Hairy Roots of Tagetes patula L. (Marigold). Planta, 230, 725-735.
https://doi.org/10.1007/s00425-009-0980-9
[31] Telke, A.A., Kagalkar, A.N., Jagtap, U.B., et al. (2011) Biochemical Characterization of Laccase from Hairy Root Culture of Brassica juncea L. and Role of Redox Mediators to Enhance Its Potential for the Decolorization of Textile Dyes. Planta, 234, 1137-1149.
https://doi.org/10.1007/s00425-011-1469-x
[32] Wu, G., Kang, H.B., Zhang, X.Y., et al. (2010) A Critical Review on the Bioremoval of Hazardous Heavy Metals from Contaminated Soils: Issues, Progress, Eco-Environmental Concerns and Opportunities. Journal of Hazardous Materials, 174, 1-8.
https://doi.org/10.1016/j.jhazmat.2009.09.113
[33] Doran, P.M. (2011) Hairy Root Studies in Phytoremediation and Phytomining. In: Golubev, I.A., Ed., Handbook of Phytoremediation, Nova Science, New York, 591-612.
[34] Vinterhalter, B., Savic, J., Platisa, J., et al. (2008) Nickel Tolerance and Hyperaccumulation in Shoot Cultures Regenerated from Hairy Root Cultures of Alyssum murale Waldst et Kit. Plant Cell, Tissue and Organ Culture, 94, 299-303.
https://doi.org/10.1007/s11240-008-9343-7
[35] Subroto, M.A., Priambodo, S. and Indrasti, N.S. (2007) Accumulation of Zinc by Hairy Root Cultures of Solanum nigrum. Biotechnology, 6, 344-348.
https://doi.org/10.3923/biotech.2007.344.348
[36] Boominathan, R., Saha-Chaudhury, N.M., Sahajwalla, V. and Doran, P.M. (2004) Production of Nickel Bio-Ore from Hyperaccumulator Plant Biomass: Applications in Phytomining. Biotechnology and Bioengineering, 86, 243-250.
https://doi.org/10.1002/bit.10795
[37] 施和平, 王云灵, 曾宝强, 等. 外源钙对镉胁迫下南美蟛蜞菊毛状根生长、抗氧化酶活性和镉吸收的缓解效应[J]. 生物工程学报, 2012, 28(6): 747-762.
[38] Bhargava, A., Acarmona, F.F., Bhargava, M. and Srivastava, S. (2012) Approaches for Enhanced Phytoextraction of Heavy Metals. Journal of Environmental Management, 105, 103-120.
https://doi.org/10.1016/j.jenvman.2012.04.002
[39] 曹庆丰, 向太和, 孟莎莎, 等. 长期培养的黄瓜毛状根中外源基因遗传稳定性分析[J]. 园艺学报, 2012, 39(8): 1583-1588.
[40] 慕平利. Ri质粒介导fps基因转化烟草的研究[D]: [硕士学位论文]. 郑州: 河南农业大学, 2006.
[41] 杨致荣, 王兴春, 薛金爱, 等. 发根农杆菌介导的长春花高效转基因体系的建立[J]. 植物生理学报, 2012, 48(10): 997-1004.
[42] 张晓军. 转rol基因杨树苗期性状对比研究[D]: [硕士学位论文]. 保定: 河北农业大学, 2011.
[43] 刘静轶. 发根农杆菌介导IRT1基因转化镉超富集植物油菜的研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2014.
[44] Coniglio, M.S., Busto, V.D., Gonzalez, P.S., et al. (2008) Application of Brassica napus Hairy Root Cultures for Phenol Removal from Aqueous Solutions. Chemosphere, 72, 1035-1042.
https://doi.org/10.1016/j.chemosphere.2008.04.003
[45] Gonzalez, P.S., Capozucca, C., Tigier, H., et al. (2006) Phytoremediation of Phenol from Wastewater, by Peroxidases of Tomato Hairy Root Cultures. Enzyme and Microbial Technology, 39, 647-653.
https://doi.org/10.1016/j.enzmictec.2005.11.014
[46] Gonzalez, P.S., Maglione, G.A., Giordana, M., et al. (2012) Evaluation of Phenol Detoxification by Brassica napus Hairy Roots, Using Allium cepa Test. Environmental Science and Pollution Research, 19, 482-491.
https://doi.org/10.1007/s11356-011-0581-6
[47] Sosa, A.L.G., Talano, M.A., Ibanez, S.G., et al. (2009) Establishment of Transgenic Tobacco Hairy Roots Expressing Basic Peroxidases and Its Application for Phenol Removal. Journal of Biotechnology, 139, 273-279.
https://doi.org/10.1016/j.jbiotec.2008.11.008
[48] Sosa, A.L.G., Racagni, G., Agostini, E. and Medina, M.I. (2012) Phospholipid Turnover and Phospholipase D Activity in Tobacco Hairy Roots Exposed to Phenol. Environmental and Experimental Botany, 77, 141-145.
https://doi.org/10.1016/j.envexpbot.2011.11.006
[49] Sosa, A.L.G., Ibanez, S.G., Agostini, E., et al. (2012) Phytoremediation of Phenol at Pilot Scale by Tobacco Hairy Roots. Journal of Environmental Sciences, 3, 398-407.
[50] Talano, M.A., Frontera, S., Gonzalez, P., et al. (2010) Removal of 2,4-Diclorophenol from Aqueous Solutions Using Tobacco Hairy Root Cultures. Journal of Hazardous Materials, 176, 784-791.
https://doi.org/10.1016/j.jhazmat.2009.11.103
[51] Ghodake, G.S., Telke, A.A., Jadhav, J.P., et al. (2009) Potential of Brassica juncea in Order to Treat Textile Effluent Contaminated Sites. International Journal of Phytopharmacology, 11, 297-312.
[52] Kagalkar, A.N., Jagatap, U.B., Jadhav, J.P., et al. (2009) Biotechnological Strategies for Phytoremediation of the Sulphonated Azo Dye Direct Red 5B Using Blumea malcolmii Hook. Bioresource Technology, 100, 4104-4110.
https://doi.org/10.1016/j.biortech.2009.03.049
[53] Van Aken, B., Correa, P.A. and Schnoor, J.L. (2010) Phytoremediation of Polychlorinated Biphenyls: New Trends and Promises. Environmental Science and Technology, 44, 2767-2776.
https://doi.org/10.1021/es902514d
[54] Kucerova, P., Mackva, M., Polachova, L., et al. (1999) Correlation of PCB Transformation by Plant Tissue Cultures with Their Morphology and Peroxidase Activity Changes. Collection of Czechoslovak Chemical Communications, 64, 1497-1509.
https://doi.org/10.1135/cccc19991497
[55] Kucerova, P., Wiesche, C., Wolter, M., et al. (2001) The Ability of Different Plant Species to Remove Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls from Incubation Media. Biotechnology Letters, 23, 1355-1359.
https://doi.org/10.1023/A:1010502023311
[56] Mackova, M., Macek, T., Kucerova, P., et al. (1997) Degradation of Polychlorinated Biphenyls by Hairy Root Culture of Solanum nigrum. Biotechnology Letters, 19, 787-790.
https://doi.org/10.1023/A:1018348511978
[57] Mackova, M., Macek, T., Ocenaskova, J., et al. (1997) Biodegradation of Polychlorinated Biphenyls by Plant Cells. International Biodeterioration & Biodegradation, 39, 317-325.
https://doi.org/10.1016/S0964-8305(97)00028-0
[58] Sandermann, H. (1994) Higher Plant Metabolism of Xenobiotics: The “Green Liver” Concept. Pharmacogenetics, 4, 225-241.
[59] Kucerova, P., Mackova, M., Chroma, L., et al. (2000) Metabolism of Polychlorinated Biphenyls by Solanum nigrum Hairy Root Clone SNC-9O and Analysis of Transformation Products. Plant and Soil, 225, 109-115.
https://doi.org/10.1023/A:1026551728196
[60] Rezek, J., Macek, T., Mackova, M. and Triska, J. (2007) Plant Metabolites of Polychlorinated Biphenyls in Hairy Root Culture of Black Nightshade Solanum nigrum SNC-9O. Chemosphere, 69, 1221-1227.
https://doi.org/10.1016/j.chemosphere.2007.05.090
[61] Huber, C., Bartha, B., Harpaintner, R. and Schröder, P. (2009) Metabolism of Acetaminophen (Paracetamol) in Plants—Two Independent Pathways Result in the Formation of a Glutathione and a Glucose Conjugate. Environmental Science and Pollution Research, 16, 206-213.
https://doi.org/10.1007/s11356-008-0095-z
[62] Meharg, A.A. and Cairney, J.W.G. (2000) Co-Evolution of Mycorrhizal Symbionts and Their Hosts to Metal-Conta- minated Environments. Advances in Ecological Research, 30, 69-112.
https://doi.org/10.1016/S0065-2504(08)60017-3
[63] Soudek, P., Petrova, S., Benesova, D. and Vanek. T. (2011) Uranium Uptake and Stress Responses of in Vitro Cultivated Hairy Root Culture of Armoracia rusticana. Agrochimica-Pisa, 55, 15-28.
[64] Straczek, A., Wannijn, J., Vanhees, M., et al. (2009) Tolerance of Hairy Roots of Carrots to U Chronic Exposure in a Standardized in Vitro Device. Environmental and Experimental Botany, 65, 82-89.
https://doi.org/10.1016/j.envexpbot.2008.03.004
[65] Hughes, J.B., Shanks, J., Vanderford, M., et al. (1997) Transformation of TNT by Aquatic Plants and Plant Tissue Cultures. Environmental Science and Technology, 31, 266-271.
https://doi.org/10.1021/es960409h
[66] Nepovim, A., Podlipna, R., Soudek, P., et al. (2004) Effects of Heavy Metals and Nitroaromatic Compounds on Horseradish Glutathione S-Transferase and Peroxidase. Chemosphere, 57, 1007-1015.
https://doi.org/10.1016/j.chemosphere.2004.08.030