MD  >> Vol. 7 No. 2 (June 2017)

    Application of Imaging Techniques in the Clinical Diagnosis of Parkinson’s Disease

  • 全文下载: PDF(387KB) HTML   XML   PP.35-41   DOI: 10.12677/MD.2017.72007  
  • 下载量: 248  浏览量: 624   国家自然科学基金支持



帕金森病神经影像学诊断Parkinson’s Disease Neurological Imaging Technologies Diagnosis



Parkinson’s disease is one of the common neurodegenerative diseases in elder patients, which brings huge emotional and economic burden to the family and society. Thus, how to early diagnose and treat the disease is essential to PD patients. With the fast development of neurological imaging technologies, PD image diagnosis has new methods. Therefore, present review covers the use of transcranial sonography, magnetic resonance imaging, single-photon emission computed tomographic imaging, positron emission computed tomography in visualize cerebral blood circulation, cerebral metabolism, neurotransmitters, transporter, receptors and sonography changes in PD patients, and we hope to provide certain help in clinical setting.

张学凯, 时晶, 张立苹. 影像学技术在帕金森病临床诊断中的应用[J]. 医学诊断, 2017, 7(2): 35-41.


[1] 中华医学会神经病学分会帕金森病及运动障碍学组. 中国帕金森病治疗指南(第三版)[J]. 中华神经科杂志, 2014(6): 428-433.
[2] 朱明伟, 王鲁宁, 罗毅, 王振福, 胡亚卓. 帕金森病和帕金森叠加综合征11例黑质纹状体病理观察[J]. 中华神经科杂志, 2006, 39(4): 250-254.
[3] Becker, G., Seufert, J., Bogdahn, U., et al. (1995) Degeneration of Substantia Nigra in Chronic Parkinson’s Disease Visualized by Trans-Cranial Color-Coded Real-Time Sonography. Neurology, 45, 182-184.
[4] Gaenslen, A., Unmuth, B., Godau, J., et al. (2008) The Specificity and Sensitivity of Transcranial Ultrasound in the Differential Diagnosis of Parkinson’s Disease: A Prospective Blinded Study. The Lancet Neurology, 7, 417-424.
[5] Berardelli, A., Wenning, G.K., Antonini, A., et al. (2013) EFNS/MDS-ES Recommendations for the Diagnosis of Parkinson’s Disease. European Journal of Neurology, 20, 16-34.
[6] Zhou, H.-Y., Sun, Q., Tan, Y.-Y., et al. (2016) Substantia Nigra Echogenicity Correlated with Clinical Features of Parkinson’s Disease. Parkinsonism & Related Disorders, 24, 28-33.
[7] Baudrexel, S., Klein, J.C., Deichmann, R. and Hilker, R. (2010) Innovative MRI Techniques in Parkinson’s Disease. Nervenarzt, 81, 1180-1188.
[8] Masilamoni, G., Votaw, J., Howell, L., et al. (2010) (18) F-FECNT: Validation as PET Dopamine Transporter Ligand in Parkinsonism. Experimental Neurology, 226, 265-273.
[9] Auer, D.P. (2009) In Vivo Imaging Markers of Neurodegeneration of the Substantia Nigra. Experimental Gerontology, 44, 4-9.
[10] Matsusue, E. and Ogawa, T. (2007) Clinical Applications of 3.0 T magnetic Resonance System in the Neuroradiological Field. Brain Nerve, 59, 479-485.
[11] Zhang, J., Zhang, Y., Wang, J., et al. (2010) Characterizing Iron Deposition in Parkinson’s Disease Using Susceptibility-Weighted Imaging: An in Vivo MR Study. Brain Research, 1330, 124-130.
[12] 王珲, 唐荣华, 马育林, 等. 磁共振扩散张量成像及波谱分析在帕金森病早期诊断中的应用[J]. 神经损伤与功能重建, 2015, 10(1): 46-49.
[13] Pyatigorskaya, N., Gallea, C., Garcia-Lorenzo, D., Vidailhet, M. and Lehericy, S. (2014) A Review of the Use of Magnetic Resonance Imaging in Parkinson’s Disease. Therapeutic Advances in Neurological Disorders, 7, 206-220.
[14] Ashburner, J. and Friston, K.J. (2001) Why Voxel-Based Morphometry Should Be Used. Neuroimage, 14, 1238-1243.
[15] Geng, D.-Y., Li, Y.-X. and Zee, C.-S. (2006) Magnetic Resonance Imaging-Based Volumetric Analysis of Basal Ganglia Nuclei and Substantia Nigra in Patients with Parkinson’s Disease. Neurosurgery, 58, 256-262.
[16] Borghammer, P., Østergaard, K., Cumming, P., et al. (2010) A Deformation-Based Morphometry Study of Patients with Early-Stage Parkinson’s Disease. European Journal of Neurology, 17, 314-320.
[17] Lewis, M.M., Du, G., Sen, S., et al. (2011) Differential Involvement of Striato- and Cerebello-Thalamo-Cortical Pathways in Tremor- and Akinetic/Rigid-Predominant Parkinson’s Disease. Neuroscience, 177, 230-239.
[18] Stoessl, A.J. (2012) Neuroimaging in Parkinson’s Disease: From Pathology to Diagnosis. Parkinsonism & Related Disorders, 18, S55-S59.
[19] Jennings, D.L., Seibyl, J.P., Oakes, D., Eberly, S., Murphy, J. and Marek, K. (2004) (123I) Beta-CIT and Single-Photon Emission Computed Tomographic Imaging vs. Clinical Evaluation in Parkinsonian Syndrome: Unmasking an Early Diagnosis. Archives of Neurology, 61, 1224-1229.
[20] Bajaj, N., Hauser, R.A. and Grachev, I.D. (2013) Clinical Utility of Dopamine Transporter Single Photon Emission CT (DaT-SPECT) with (123I) Ioflupane in Diagnosis of Parkinsonian Syndromes. Journal of Neurology, Neurosurgery, and Psychiatry, 84, 1288-1295.
[21] Perlmutter, J.S. and Norris, S.A. (2014) Neuroimaging Biomarkers for Parkinson Disease: Facts and Fantasy. Annals of Neurology, 76, 769-783.
[22] Feigin, A., Fukuda, M., Dhawan, V., et al. (2001) Metabolic Correlates of Levodopa Response in Parkinson’s Disease. Neurology, 57, 2083-2088.
[23] Wang, J., Hoekstra, J.G., Zuo, C., Cook, T.J. and Zhang, J. (2013) Biomarkers of Parkinson’s Disease: Current Status and Future Perspectives. Drug Discovery Today, 18, 155-162.
[24] Lee, M. (2013) Neurotransmitters and Microglial-Mediated Neuroinflammation. Current Protein and Peptide Science, 14, 21-32.
[25] Braak, H., Del Tredici, K., Rüb, U., de Vos, R.A.I., Jansen Steur, E.N.H. and Braak, E. (2003) Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiology of Aging, 24, 197-211.
[26] Ouchi, Y., Yoshikawa, E., Sekine, Y., et al. (2005) Microglial Activation and Dopamine Terminal Loss in Early Parkinson’s Disease. Annals of Neurology, 57, 168-175.
[27] Iannaccone, S., Cerami, C., Alessio, M., et al. (2013) In Vivo Microglia Activation in Very Early Dementia with Lewy Bodies, Comparison with Parkinson’s Disease. Parkinsonism & Related Disorders, 19, 47-52.