# 风电功率统计建模及预测Modeling and Prediction of Wind Power Statistics

DOI: 10.12677/SA.2017.62031, PDF, HTML, XML, 下载: 1,162  浏览: 3,661  科研立项经费支持

Abstract: In this paper, time series, artificial neural network, gray forecast are adopted to predict the power of wind turbines. By means of setting up three types of rational prediction models and performing error analysis, this paper presents an improvement scheme to make predictions more accurate. Finally, the models are applied to several wind turbines. The analysis demonstrates that the orig-inal measurement data often contain various errors, so the prediction accuracy of wind power cannot be infinitely increased.

 [1] 张新房, 徐大平, 吕跃刚, 柳亦兵. 风力发电技术的发展及若干问题[J]. 现代电力, 2003, 20(5). [2] 雷亚洲, 王伟胜, 任永华, 等. 含风电场电力系统的有功有化潮流[J]. 电网技术, 2002, 26(6): 18-21. [3] 楼顺天, 施阳. 基于MATLAB的系统分析与设计——神经网络[M]. 西安: 电子科技大学出版社, 2000. [4] 董安正, 赵国潘. 人工神经网络在短期资料风速估计方面的应用[J]. 工程力学, 2003, 20(5): 10-13. [5] 潘迪夫, 刘辉, 李燕飞. 给予时间序列分析和卡拉曼滤波法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86. [6] 丁明, 张立军, 吴仪纯. 给予时间序列分析的风电场风俗预测模型[J]. 电力自动化设备, 2005, 25(8): 32-34. [7] 刘玉. 基于实测数据分析的大型风电场风电功率预测研究[J]. 黑龙江电力, 2011, 33(1): 11-15. [8] 刘纯, 范高锋, 王伟胜, 戴慧珠. 风电场输出功率的组合预测模型[J]. 电网技术, 2009(13) :74-79.