碳纳米管复合材料的界面剪切应力研究
A Study on Interfacial Shear Stress for Carbon Nanotube Composites
DOI: 10.12677/MS.2017.74058, PDF, HTML, XML, 下载: 1,441  浏览: 4,340  科研立项经费支持
作者: 高 明, 卞立春, 潘 静, 刘 伟, 孟淑睿:燕山大学,工程力学系,河北 秦皇岛
关键词: 碳纳米管界面切应力轴向应力剪切滞后模型弹性理论Carbon Nanotube Interfacial Shear Stress Axial Loading Shear Lag Model Elastic Theory
摘要: 本论文采用剪切滞后模型,建立了碳纳米管复合材料的代表性体元模型,并且将碳纳米管看做一个有效纤维,模拟分析碳纳米管复合材料的主要形态特性。研究重点主要集中在碳纳米管与基体接触面的剪切应力,假设有效纤维与碳纳米管具有相同的直径和长度,运用应力连续条件和位移连续条件以及相关平衡方程等,推导得出计算所需要的复合材料界面处的切应力表达式,本论文推论得到的结果可以校核碳纳米管复合材料因滑动位移而产生的破坏。
Abstract: In this paper, the shear lag model is used to establish the representative element model of carbon nanotube composite and the carbon nanotube is considered as an effective fiber to simulate the main morphological characteristics of composites. The investigation focuses on the shear stress of interface, and it is assumed that the effective fibers and carbon nanotubes have the same diameter and length. The interface shear stress expression is derived using the continuity conditions of stress and displacement, and equilibrium equations. Based on the results obtained, the damage caused by the sliding displacement of carbon nanotube composites could be checked.
文章引用:高明, 卞立春, 潘静, 刘伟, 孟淑睿. 碳纳米管复合材料的界面剪切应力研究[J]. 材料科学, 2017, 7(4): 440-449. https://doi.org/10.12677/MS.2017.74058

参考文献

[1] Thostenson, E.T., Ren, Z.F. and Chou, T.W. (2001) Advances in the Science and Technology of Carbon Nanotubes and their Com-posites: A Review. Composites Science and Technology, 61, 1899-1912.
https://doi.org/10.1016/S0266-3538(01)00094-X
[2] Qian, D., Dickey, E.C., Andrews, R. and Rantell, T. (2000) Load Transfer and Deformation Mechanisms in Carbon Nanotube Polystyrene Composites. Applied Physics Letters, 76, 2868-2870.
https://doi.org/10.1063/1.126500
[3] Bian, L.C. and Zhao, H.C. (2015) Elastic Properties of a Single-Walled Carbon Nanotube under a Thermal Environment. Composite Structures, 121, 337-343.
https://doi.org/10.1016/j.compstruct.2014.11.032
[4] Wagner, H.D., Lourie, O., Feldman, Y. and Tenne, R. (1998) Stress-Induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix. Applied Physics Letters, 72, 188-190.
[5] 卞立春, 薛正敏, 潘静, 刘伟, 孟淑睿. 团聚效应碳纳米管复合材料特性分析[J]. 材料科学, 2016, 6(6): 398-406.
[6] Ang, K.K. and Ahmed, K.S. (2013) An Improved Shear-Lag Model for Carbon Nanotube Reinforced Polymer Composites. Composites Part B Engineering, 50, 7-14.
https://doi.org/10.1016/j.compositesb.2013.01.016
[7] Li, W.X., Zhu, J., Hao, Y., Dai, J. and Wang, Q. (2010) A Shear-Lag Model for Carbon Nanotube-Reinforced Magnesium Matrix Composites. Advanced Materials And Processing, 15, 305-309.
[8] Gao, X.L. and Li, K. (2005) A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites. International Journal of Solids and Structures, 42, 1649-1667.
https://doi.org/10.1016/j.ijsolstr.2004.08.020
[9] Wang, J.X., Tong, L. and Karihaloo, B.L. (2016) A Bridging Law and Its Application to the Analysis of Toughness of Carbon Nanotube-Reinforced Composites and Pull-Out of Fibres Grafted with Nanotubes. Archive of Applied Mechanics, 86, 361-373.
https://doi.org/10.1007/s00419-015-1100-x
[10] Pan, J., Bian, L.C., Zhao, H.C. and Zhao, Y. (2016) A New Micromechanics Model and Effective Elastic Modulus of Nanotube Reinforced Composites. Computational Materials Science, 113, 21-26.
https://doi.org/10.1016/j.commatsci.2015.11.009
[11] Alian, A.R., Kundalwal, S.I. and Meguid, S.A. (2015) Multiscale Modeling of Carbon Nanotube Epoxy Composites. Polymer, 7, 149-160.
[12] Gupta, A.K. and Harsha, S.P. (2016) Analysis of Mechanical Properties of Carbon Nanotube Reinforced Polymer Composites Using Multi-Scale Finite Element Modeling Approach. Composites Part B. Engineering, 95, 172-178.
https://doi.org/10.1016/j.compositesb.2016.04.005
[13] Banerjee, D., Nguyen, T. and Chuang, T.J. (2016) Mechanical Properties of Single-Walled Carbon Nanotube Reinforced Polymer Composites with Varied Interphase’s Modulus and Thickness: A Finite Element Analysis Study. Computational Materials Science, 114, 209-218.
https://doi.org/10.1016/j.commatsci.2015.12.026
[14] Lu, X. and Hu, Z. (2012) Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling. Composites Part B. Engineering, 43, 1902-1913.
https://doi.org/10.1016/j.compositesb.2012.02.002
[15] Chen, Y., Wang, S., Liu, B. and Zhang, J. (2015) Effects of Geometrical and Mechanical Properties of Fiber and Matrix on Composite Fracture Toughness. Composite Structures, 122, 496-506.
https://doi.org/10.1016/j.compstruct.2014.12.011
[16] Liu, X., Yang, Q.S., He, X.Q. and Liew, K.M. (2016) Cohesive Laws for van der Waals Interactions of Super Carbon Nanotube/Polymer Composites. Mechanics Research Communications, 72, 33-40.
[17] Jiang, L.Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K.C. and Liu, B. (2006) A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force. Journal of the Mechanics and Physics of Solids, 54, 2436-2452.
https://doi.org/10.1016/j.jmps.2006.04.009
[18] Guo, G.D. and Zhu, Y. (2015) Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer between a Monolayer Graphene and a Polymer Substrate. Journal of Applied Mechanics, 82, Article ID: 031005.
https://doi.org/10.1115/1.4029635
[19] Lu, W.B., Wu, J., Song, J., Hwang, K.C., Jiang, L.Y. and Huang, Y. (2008) A Cohesive Law for Interfaces between Multi-Wall Carbon Nanotubes and Polymers Due to the van der Waals Interactions. Computer Methods in Applied Mechanics & Engineering, 197, 3261-3267.
[20] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[21] Cox, H.L. (1952) The Elasticity and Strength of Paper and Other Fibrous Materials. British Journal of Applied Physics, 3, 72-79.
https://doi.org/10.1088/0508-3443/3/3/302
[22] 高庆, 康国政. 短纤维复合材料应力传递的修正剪滞理论[J]. 固体力学学报, 2000, 21(3): 198-204.